GEOTECHNICAL ENGINEERING STUDY

CLEAR SPRING MEADOWS NEW BRAUNFELS, TEXAS PAVEMENT DESIGN

FROST GEOSCIENCES, INC. PROJECT NO.: FGS-G 21116

REVISED February 5, 2024

Prepared Exclusively for:

Mr. Trey Rogers Pulte Group 1718 Dry Creek Way San Antonio, Texas 78259

Construction Materials = Forensics Environmental = Geotechnical

Frost GeoSciences

Frost Geosciences, Inc. 13406 Western Oak Helotes, Texas 78023 Office (210)-372-1315 Fax (210)-372-1318 <u>www.frostgeosciences.com</u> TBPE Firm Registration # F-9227 TBPG Firm Registration # 50040

Revised February 5, 2024

Mr. Trey Rogers Pulte Group 1718 Dry Creek Way San Antonio, Texas 78259

SUBJECT:

Geotechnical Engineering Services CLEAR SPRING MEADOWS New Braunfels, Texas FGS Project No: FGS-G21116

Dear Mr. Rogers:

Frost GeoSciences, Inc. (FGS) is a geotechnical engineering company registered with the Texas Board of Professional Engineers, with registration No. F-9227, and is pleased to submit the results of our Geotechnical Engineering Study for the above referenced project. This report includes the results of field and laboratory testing along with our recommendations for use in preparation of the appropriate design and construction documents for this project.

We appreciate the opportunity to be of service to you in this phase of your project and future projects. If you have any questions pertaining to this report, or if we may be of further service, please contact our office.

Respectfully submitted, Frost GeoSciences, Inc.

F. J. Caballero, P.E. Project Engineer Copies Submitted:

- i. One (1) Electronic: Mr. Trey Rogers, Pulte Group, San Antonio, Texas
- ii. One (1) File

FGS-G-21116

TABLE OF CONTENTS

PROJECT INFORMATION1
Project Authorization1
Project Description1
Purpose and Scope of Services
SITE AND SUBSURFACE CONDITIONS
Site Description2
Site Geology2
Soil Description2
Subsurface Conditions
Soil Corrosiveness4
Subsurface Water Information5
ENGINEERING ANALYSIS AND RECOMMENDATIONS5
Pavement Design5
Pavement Analysis7
Pavement Material Specifications8
Lime Series Curve and Unconfined Compressive Strength9
Subgrade Preparation9
Drainage10
Utilities
Excavations10
QUALITY CONTROL
Document Review
Construction Materials Testing
REPORT LIMITATIONS
ILLUSTRATIONS
APPENDIX A
APPENDIX B

Frost GeoSciences

PROJECT INFORMATION

Project Authorization:

Frost GeoSciences, Inc. (FGS) has completed a geotechnical engineering study for new pavements to be constructed in the **Clear Spring Meadows in New Braunfels**, **Texas**. This project was authorized by **Mr. Sean Miller of Pulte Group**, through acceptance of Frost GeoSciences **Proposal No.: FGS-P-G21128 dated May 12, 2021.** Our scope of services for this project is as outlined in that proposal.

Project Description:

We understand that the **Clear Spring Meadows Development** involves the design and construction of both a **One & Two Family Residential Local Streets** and **Residential Collector Streets**. The pavement section design will be in accordance with the **New Braunfels Flexible Pavement Design Criteria**. A Vicinity Map showing the location of the project is included in the section of this report entitled Illustrations.

Purpose and Scope of Services:

The purpose of the geotechnical investigation is to evaluate the subsurface conditions at the project site and develop geotechnical engineering recommendations and guidelines for use in preparing the appropriate design and other related construction documents for this project. Therefore, our scope of services for this project include the following:

- Drill borings and excavate test pits at selected locations within the project limits to evaluate subsurface conditions and to observe the potential presence of subsurface water;
- Perform geotechnical engineering laboratory tests on selected samples recovered during our field activities to evaluate their physical and engineering properties;
- Perform Engineering analyses to develop the appropriate geotechnical engineering recommendations and guidelines, to include:
- Appropriate pavement section thickness recommendations;
- Pavement section material requirements and specifications;
- General site and subgrade preparation within the construction limits; and
- General comments regarding construction methods, sequences and potential difficulties that may arise during overall construction as it relates to the geotechnical engineering aspects of this project.

Frost GeoSciences

 Prepare a written report that includes a boring location plan, boring log at each bore site, and results of the laboratory testing program, descriptions of the subsurface conditions encountered and our geotechnical engineering recommendations and guidelines developed for this project.

Our scope of services for this project did not include the assessment of any potential environmental concerns at this site. Therefore, such concerns are not addressed in this report.

SITE AND SUBSURFACE CONDITIONS

Site Description:

The site conditions were assessed using a combination of aerial photography and observations made by the FGS personnel during our field operations. The following site conditions were noted:

• The site is the Clear Spring Meadows Development in New Braunfels, Comal County Texas.

Site Geology:

According to the Bureau of Economic Geology: Geologic Atlas of Texas, San Antonio Sheet (1982), the Site is located on the Cretaceous, Upper Glen Rose Formation (Qle).

• The Leona Formation (Qle) is fine calcareous silt that begins grading down into coarse gravel.

Soil Description:

According to the United States Department of Agricultural (USDA) Natural Resources Conservation Service (NRCS) Soil Survey of Guadalupe County (1977), the Site is located on the following soils:

- The Barbarosa silty clay, 1-3% slopes (BaB) is a gently sloping soil located on terraces. Areas range from 10 to 50 acres in size. This soil consists of deep, noncalcareous, nearly level to gently sloping, clayey soils, on ancient stream terraces. These soils formed in ancient, calcareous, clayey alluvium. The surface layer is very dark grayish-brown silty clay about 16 inches thick. The next layer, to a depth of 56 inches, is brown, firm clay in the upper part and light yellowish-brown, firm silty clay in the lower part. The lower part is about 10 percent, by volume, concretions and soft masses of lime. The Barbarosa silty clay is well drained. Runoff is medium and the hazard of water erosion is moderate.
- Branyon Clay, 0-1% slopes (BrA) is a deep, nearly level soil on ancient high stream terraces in the Blackland Prairie Resource Area. Typically, this soil has an upper layer of very dark gray clay about 52 inches thick. the next layer, about 12 inches thick, is gray, very firm clay in the upper part and pale-brown, extremely firm clay in the lower part. It is underlain by very pale brown,

Frost GeoSciences;

friable silty clay loam that is about 10 percent by volume limestone pebbles and concretions and soft masses of lime. Surface runoff is slow. Water erosion is a slight hazard.

- The Barbarosa silty clay, 0-1% slopes (BaA) is located on terraces. Areas are typically100-200 acres in size and are somewhat irregular to oval shaped. This soil consists of deep, noncalcareous, nearly level to gently sloping, clayey soils, on ancient stream terraces. These soils formed in ancient, calcareous, clayey alluvium. The surface layer is very dark grayish-brown silty clay about 24 inches thick. The next layer, to a depth of 72 inches, is clay. It is reddish brown in the upper part and reddish yellow in the lower part. The Barbarosa silty clay is well drained. Runoff is slow, internal drainage is medium, and permeability is slow. Available water capacity is high. The hazard of water erosion is slight.
- The Queeny Gravelly Loam, 1-5% slopes (QeC) is a gently sloping soil found mainly on terraces. Areas range from about 5 to 30 acres in size. The surface layer is very dark grayish-brown gravelly loam about 9 inches thick. The upper part of the underlying material is very pale brown strongly cemented platy caliche about 8 inches thick; the middle part is a white, weakly cemented caliche about 20 inches thick; and the lower part, to a depth of 144 inches, is very gravelly sand. The gravel content of the surface layer is variable, and ranges from practically none to 25 percent by volume. The Queeny soils are well drained. Permeability is moderate in the surface layer and slow in the caliche layer. Available water capacity is very low. Runoff is medium. The hazard of water erosion is slight.
- The Trinity Clay, frequently flooded (Tw) This nearly level soil is in the lowest part of flood plains of creeks. Areas flood 1 to 2 days mainly in spring or in fall of each year. Areas are about 200 to 1,200 feet wide, and they follow the drainage patterns of the creeks. Stream channels make up about 10 percent of the mapped areas. Areas are mainly several hundred acres in size. Slopes have a gradient of less than 1 percent. The profile of this soil is the one described as representative of the series. In places limestone and chert pebbles are on the surface. Included with this soil in mapping are a few spots of Bosque and Seguin soils that are in about the same position as Trinity soils. These spots make up less than 15 percent of the mapped areas. The soil is somewhat poorly drained. It is suited to improved pasture grasses, native range, and recreation. It is not suited to cultivated crops because of frequent flooding.

Subsurface Conditions:

Subsurface conditions at the site were evaluated by drilling a total of FIFTEEN (15) soil borings to a depth of Fifteen (15) feet and THREE (2) test pits to approximately two (2) feet depth were excavated to obtain soil samples to determine the California Bearing Ratio (CBR) of the soil samples. The borings were drilled to the depth at which they were terminated due to auger refusal, this depth is indicated in each of the Boring Logs. The number of borings and test pits, their locations and their depths were selected by FGS. The borings and test pits were located in the field by FGS personnel using Global Positioning System (GPS) technology. The borings were advanced using solid flight auger drilling methods and soil samples were routinely obtained during the drilling FGS Project No: FGS-G21116

Frost GeoSciences

process; the test pits are routinely excavated to the appropriate depth. Drilling and sampling techniques were accomplished in general accordance with ASTM procedures. Logs of the borings are presented in the Appendix section at the end of the report. A Borehole Location Plan with the location of each boring is presented in the Illustrations section of this report.

The soil samples obtained during our field exploration were transported to our laboratory where they were reviewed by qualified geotechnical engineering personnel. Representative samples were selected and tested to determine pertinent engineering properties and characteristics for use in evaluating the project site. Laboratory testing and soil classification were accomplished in general accordance with ASTM procedures.

Based on the field and laboratory data, it is determined that the stratigraphy of the site is generally as follows:

Stratum	Range of Depth, (feet)	Stratum Description and Classification
Ι	0.0 to 4.0	Fat Clay (CH), Dark Brown
Ш	4.0 to 6.0	Chalky Clay (CL), Tan
ш	6.0 to 10.0	Clay (CL), Tan with Calcareous
IV	10.0 to 15.0	Marley Weathered Clay (CL), Tan

The subsurface descriptions shown above are general in nature and highlight major subsurface stratification features and material types. The boring logs included in Appendix A should be reviewed for specific information such as soil or rock material descriptions, stratifications, sampling depths and intervals, field test data and laboratory test data. The stratifications shown on each boring log only represent the conditions and approximate boundaries between strata at that actual boring location. The actual transitions between strata may be gradual. Variations will occur and should be expected at locations away from each boring logs. The indicated stratum depths and any subsurface water levels are measured from the ground surface and are estimated to the nearest one-half (½) foot. Portions of any samples that are not altered or consumed by laboratory testing will be retained for 30 days from the date of issuance of this report. Unless otherwise requested by the client and/or depending upon project requirements, all soil samples will be discarded after that retention period.

The **P.I. values** obtained from the soil samples taken **near the surface ranged from 40 to 45** in the **CLAY** subgrade soil. Due to the characteristics of the materials found in the area, FGS is of the opinion that the Plastic Index (P.I.) value of the material near the surface will pose a problem if not treated with LIME or replaced with a more suitable material.

Soil Corrosiveness:

Soil Corrosiveness testing was not performed at this site.

Subsurface Water Information:

The borings were advanced using dry drilling techniques to the depth at which they were terminated due to auger refusal in an attempt to detect the potential presence of subsurface water in the material. **Subsurface water was not encountered in any of the borings** upon completion of drilling operations, however it must be kept in mind that subsurface water levels are generally influenced by seasonal and climatic conditions that result in fluctuations of subsurface water levels over time.

ENGINEERING ANALYSIS AND RECOMMENDATIONS

Pavement Design:

Flexible pavements should be designed and constructed in accordance with the requirements established by local municipalities and the American Association of State Highway and Transportation Officials (AASHTO) "Guide for Design of Pavement Structures", for this project, the Bexar County Flexible Pavement Design Criteria was used.

Below is a table which outlines the Flexible Pavement Design Criteria, which was used in the design of the proposed street sections for this project:

	Resid Collector		Resid	Two Family ential Local Streets
W18	ESAL = 2	2,000,000	ESA	L = 100,000
R	90	%		70%
So	Flexible	Rigid	Flexible	Rigid
	0.45	0.35	0.45	0.35
Ро	4.2	4.5	4.2	4.5
Pt	2.5	2.5	2.0	2.0
ΔPSI	1.7	2.0	2.2	2.5
Т	20	0		20
CN	Min.	Max.	Min.	Max.
SN	2.92	5.05	2.58	4.20

Input Parameters used in Asphalt Pavement Section Calculation

In addition to the parameters shown above, the soil resilient modulus, M_R, of the subgrade soil, must be determined. Typically, this value is obtained through California Bearing Ratio (CBR) testing. Field investigations show that all the soil samples obtained within the subgrade at the site are very similar with very similar (CBR) values. These soils are **Dark Brown Clay with CBR values ranging between 2.7 to 3.3.** We will **use a CBR of 3.0** for our pavement design values our pavement sections. Information regarding the moisture density relationships

Frost GeoSciences

of the bulk samples of subgrade soil collected at this site and the CBR test results are presented in the Appendix section of this report.

The Pavement Sections for Soils with a CBR value of 3.0 are presented in the tables below. It should be noted, the P.I. value of the subgrade material at this site varies between 40 and 45. The subgrade soils at this site will require lime to reduce the soil plasticity.

For the purposes of developing layer thicknesses for the pavement sections shown below, we have used the following structural coefficients in the calculation of pavement structural numbers:

Material Type	Structural Coefficient	Drainage Coefficient
TXDOT Item 340, Hot Mixed Asphaltic Concrete	0.44	1.00
TXDOT Items 292 or 340, Asphalt Treated Base	0.38	1.00
TXDOT Item 247, Flexible Base - Crushed Limestone	0.14	1.00
TXDOT Item 247, Flexible Base	0.08	1.00
Lime Stabilized Subgrade, (6 inch Min.)	0.08	1.00

		0
	Residential	Residential
	Local	Collector
PAVEMENT	Min. Thickness	Min. Thickness
LAYER	Inches	Inches
HMAC	3.0	3.0
Aggregate Base	12.0	15.0
Course		
Asphalt Treated	6.0	6.0
Base Course		
Lime & Cement	6.0	6.0
Base Course	0.0	0.0
Mechanically	8.0	8.0
Stabilized Layer	0.0	0.0
Stabilized Dayer		
Moisture	60	<u> </u>
	6.0	6.0
Conditioned		
Subgrade		

New Braunfels Minimum Design Thickness

THE NEW TENSAR PROGRAM CALCULATE THE RESILIENT MODULUS (MR) VALUE WITH THE USE OF THE LABORATORY CALIFORNIA BEARING RATIO, (CBR). In this case the **MR value calculates to 4,500 psi.**

WE WILL USE MR=4,500 PSI FOR OUR PAVEMENT DESIGN.

In accordance with the **New Braunfels, Texas** design parameters we have developed the following flexible pavement recommendations for a **"ONE & TWO FAMILY LOCAL RESIDENTIAL"** Street on a Clay subgrade.

COMPONENT		FLEXIBLE DESI (inche							
	I	LOCAL RESIDENTIAL STREET							
	Option # 1	Option # 2	Option # 3						
Type D HMAC Surface	3.0 inches	3.0 inches							
Asphalt Treated Base Course	N/A	N/A							
Flexible Base, (Type A or Type B, Grade 2)	12.0 inches	8.0 inches							
TENSAR GEOGRID (TX-7)	NO	YES							
Design ESAL Value	100,000	100,000							
Actual ESAL Value	340,300	929,500							

In accordance with the **New Braunfels**, **Texas** design parameters we have developed the following flexible pavement recommendations for a **"RESIDENTIAL COLLECTOR"** Street on a Clay subgrade.

COMPONENT		FLEXIBLE DES (incl		
COMPONENT		RESIDENTIAL	COLLECTOR	
	Option # 1	Option # 2	Option # 3	Option # 4
Type D HMAC Surface	3.0 inches	3.0 inches		
Asphalt Treated Base Course	N/A	NO		
Flexible Base, (Type A or Type B, Grade 2)	18.0 inches	15.25 inches		
TENSAR GEOGRID (TX-7)	NO	YES		
Design ESAL Value	2,000,000	2,000,000		
Actual ESAL Value	2,035,800	2,038,800		

Pavement Analysis:

The pavement designs presented in the previous paragraphs DOES NOT include designs for lime stabilized subgrade and lime treated subgrade, to be used on pavement sections with a Clay subgrade and a P.I. value greater than 20. The City of **New Braunfels pavement design criteria** does not require that a minimum of six (6) inches of subgrade soil below the pavement structure be treated or stabilized if the subgrade has a P.I. value greater than 20, However we recommend that the subgrade soils be LIME TREATMENTED. In the case that subgrade fill is required to bring the subgrade elevation up to final grade, fills should be made with flexible base, on-site Chalk millings or other material approved by the Project Engineer. Fill material compaction shall be in accordance with subgrade compaction requirement for **New Braunfels**, **Texas**.

Pavement Material Specifications:

The following guidelines have been prepared for use in the selection and preparation of various materials that may be used to construct the pavement sections. Submittals should be made for each pavement material and should be reviewed by the Geotechnical Engineer and other appropriate members of the design team. The submittals should provide the test information necessary to verify full compliance of the materials with the recommended or specified material properties.

Fill Material - If fill is used to raise the grade, approved fill material underneath the pavement should be used. The fill should be free of deleterious material with a minimum CBR value of 3.0 and preferably a **Plastic Index below 19**. If the material has a PI greater than 20 the lime application rates should be re-evaluated and sulfate content tested for the fill material. The material should be placed as per applicable city or county guidelines.

Hot-Mix Asphaltic Surface Course – Asphaltic concrete should be plant mixed, hot laid, Type D meeting the 2014 TX DOT Standard Specification Item 340. Mix should be compacted to between 92 and 97 percent of the maximum theoretical density as determined by TEX-227-F.

Asphalt Treated Base – Asphalt treated base should be placed in **maximum six (6) inch compacted lifts**. These materials should conform to the requirements of the 2014 TX DOT Standard Specification Item 292, Grade 1 or Item 340, Type A or B.

Flexible Base Course – Flexible base materials should be placed in maximum eight (8) inch **compacted lifts.** The base materials should be compacted to at least 95 percent of the maximum dry density as determined by ASTM D 1557. Flexible base materials should be moisture conditioned to between plus or minus two (+-2) percentage points of the optimum moisture content. Flexible base materials should meet all requirements specified in 2014 TX DOT Standard Specification Item 247, Type A or B, Grade 1 or 2.

Lime Treated Subgrade – Clay subgrade (with P.I. values greater than 20) should be treated with hydrated lime to reduce its plasticity and improve its strength and load carrying ability. Hydrated lime should be mixed with the subgrade soils in accordance with Bexar County Specifications for Lime Treatment to reduce the P.I. value to 20 or less.

Lime Stabilized Subgrade – Clay subgrade (with P.I. values greater than 20) should be stabilized with hydrated lime to reduce its plasticity and improve its strength and load carrying ability. Hydrated lime should be mixed with the subgrade soils. The optimum lime content should result in a soil-lime mixture with a pH of at least 12.4 when tested in accordance with ASTM C 977, Appendix XI and should reduce the P.I. to 20 or less.

3 X 5 Rock Wrapped in Filter Fabric – The City may allow 3 X 5 rock wrapped in Filter Fabric instead of lime stabilization, however the wrapping fabric must be Mirafi 180N Filter Fabric or equal, and prior approval must be obtained.

Geogrid – **Tensar TX7** geogrid may be used to provide additional structural support to flexible base materials. The geogrid should be placed as per manufacturer's recommendations at the interface between the flexible base and subgrade.

Moisture Conditioned Subgrade – Exposed subgrade soils that do not need to be stabilized or treated should be scarified and moisture conditioned to between plus or minus three (+-3) percentage points of optimum to a depth of at least six (6) inches. The soils should then be compacted to at least 95 percent of the maximum dry density as determined by ASTM D 698.

Lime Series Curve and Unconfined Compressive Strength:

A Lime Series Curve was developed for the project to determine the optimum amount of hydrated lime required to stabilize the subgrade. The optimum lime content should result in a soil-lime mixture with a pH of at least 12.4 when tested in accordance with ASTM C 977 and should reduce the Plasticity Index to 20 or less. The lime series curve depicts the percent lime added to the subgrade and the resulting pH/P.I. A strength verification test was performed on the lime stabilized subgrade to determine the Unconfined Compressive Strength (UCS) of the soil-lime mixture. **Results of the** Lime Series Curve and the Unconfined Compressive Strength test are presented in the Appendix section of this report. A 4 % of lime is required to reduce the plasticity value, this translates into approximately 17.5 lbs. of lime per square yard PER SIX (6) INCHES of subgrade. Additional field verification testing will be required during the subgrade stabilization process once the project has started.

Subgrade Preparation:

The pavement alignment should be stripped of topsoil, vegetation, roots, loose or soft soils and any other deleterious materials. The stripped materials should be removed from the site and properly disposed of or used elsewhere on site. Upon completion of stripping operations, the alignment may be either excavated or filled as necessary to achieve the desired pavement elevation. Prior to the placement of any fill for grade adjustments or the construction of the pavement section, the exposed subgrade should be proof rolled with appropriate construction equipment weighing at least 20 tons. Unstable or non-uniform areas should be removed to expose stable soils and may be replaced with clean, properly compacted flexible base material or other more suitable material approved by the Project Engineer. All fill placed within the paved areas should be free of any deleterious materials and should not contain stones larger than the maximum lift thickness. The fill materials placed in paved areas should be moisture conditioned to between plus or minus three (+-3) percentage points of the optimum moisture content and compacted to at least 95 percent of the maximum dry density as determined by ASTM D 698.

Drainage:

Proper pavement perimeter drainage should be provided and maintained to minimize the infiltration of surface water into the pavement section from surrounding unpaved areas. The infiltration of water into the pavement section typically results in the accelerated degradation of the section with time as vehicular traffic traverses the infiltrated area. Curbs used in paved areas should extend at least three (3) inches into the base materials to help reduce the potential for water infiltration into the pavement section. Prefabricated strip drains or small "French" drains may also be installed behind curbs to intercept and remove water from the pavement perimeter before water infiltrates the pavement section. Furthermore, all concrete and asphalt interfaces should be sealed using a sealant that is compatible with both asphalt and concrete.

Proper pavement drainage is a critical component in the long-term performance of a pavement section. The pavement section recommendations shown above are based on generally recognized structural coefficients. These coefficients reflect the relative strength of each pavement material type and their contribution to the structural integrity of the pavement. The infiltration of water into these pavement materials will generally weaken the materials and result in the degradation of the pavement's performance. Therefore, proper drainage of the pavement should be carefully considered by the project design team to ensure that water rapidly drains from the pavement and does not pond on or around the pavement.

Utilities:

Care should be exercised to make sure that utility lines do not serve as conduits that transmit water beneath foundations or pavements at this site. Secondary backfill for utility lines that are located beneath pavement, sidewalk and building areas should consist of lean clay (CL), flowable fill or other material in accordance with local municipality or utility provider specifications. Proper compaction of trench backfill is essential in pavement areas where settlement of the trench backfill can cause significant distress to the overlaying pavement. Flowable fill materials should be as described in the American Concrete Institute ACI 229R. Granular materials such as sand or gravel are not recommended as secondary backfill in utility trenches located in building pad or pavement areas.

Excavations:

As was discussed previously, these materials that are penetrated by geotechnical augers can generally be excavated with conventional earthmoving equipment. It should be noted that excavation equipment varies and field conditions may vary. Generally, geologic processes (such as faulting, weathering, etc.) are erratic and large variations can occur in small lateral distances. Details regarding "means and methods" to accomplish the work (such as excavation equipment and technique selection) are the sole responsibility of the project contractor.

The Occupational Safety and Health Administration (OSHA) Safety and Health Standards (29 CFR Part 1926, Revised October 1989), require that excavations be constructed in accordance with the current OSHA guidelines. Furthermore, the State of Texas requires that detailed plans and specifications meeting OSHA standards be prepared for trench and excavation retention systems used during construction. The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the

Frost GeoSciences

sides of the excavations as required to maintain stability of both the excavation sides and bottom. The contractor's "responsible person", as defined in 29 CFR Part 1926, should evaluate the soil exposed in the excavation as part of the contractor's safety procedures.

In no case should slope height, slope inclination or excavation depth exceed those specified in local, state and Federal safety regulations. OSHA addresses the construction of slopes in large excavations that are less than 20 feet deep on OSHA Table B-1. We have provided this information solely as a service to our client. The OSHA regulations and OSHA Table B-1 should be consulted prior to any excavations that would be subject to OSHA regulations. FGS does not assume responsibility for construction site safety or the contractor's or other parties' compliance with local, state and Federal safety or other regulations.

QUALITY CONTROL

Document Review:

Due to the uniqueness of each project and construction site, it is important that all engineering reports, drawings, specifications, change orders and other related documents accurately reflect the recommendations intended by the respective design professionals involved in the project. The performance of the pavements planned for this project will depend on the correct interpretation and implementation of our geotechnical engineering report and guidelines. We should be provided the opportunity to review the final design and construction documents to check that our geotechnical recommendations are properly interpreted and implemented in these documents. This review is not a part of our scope of services for this project and would be an additional service. We cannot be responsible for misinterpretation of our geotechnical recommendations if we have not had an opportunity to review these documents.

Construction Materials Testing:

As the Geotechnical Engineer of Record, we recommend that Frost GeoSciences be retained to monitor the pavement installation and earthwork related activities for this project. Due to our familiarity with this project, it is important that FGS provide these services to make certain that our geotechnical recommendations are interpreted properly and to make certain that actual field conditions are those described in our geotechnical report. We believe this technical overview and on-site surveillance during these activities is essential to provide well-constructed pavements and to check that the intent of these geotechnical recommendations is met.

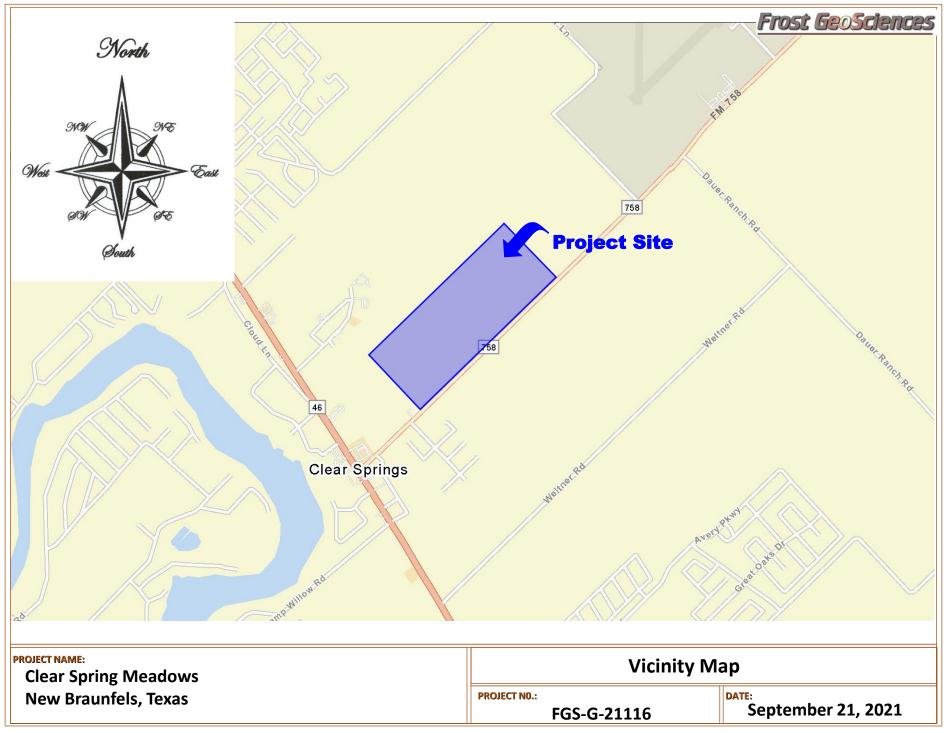
REPORT LIMITATIONS

The recommendations and guidelines submitted in this report are based on the available subsurface information developed by FGS and project information provided by the client. If there are any changes in the nature, design or location of the project, the opinions, conclusions, recommendations and guidelines submitted in this report should not be used until we are able to review the changes and respond in writing as to whether the information contained within this report remains applicable.

Frost GeoSciences

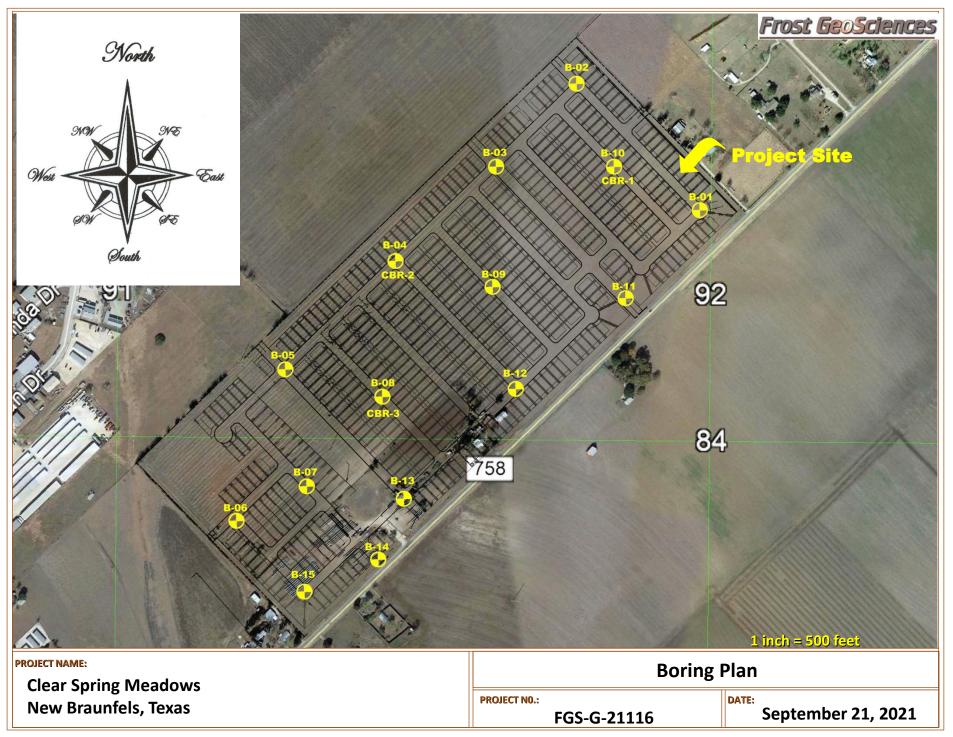
Subsurface conditions at this site have been observed and interpreted at the Boring Locations only. Substantial variations in subsurface materials resulting from local geologic conditions or previous site use may occur away from the boring locations. These variations may not become evident until construction begins. Therefore, any conditions that vary significantly from those described in our report should be reported to FGS immediately. FGS will then determine whether our conclusions, opinions and recommendations remain valid or whether additional investigation and/or engineering analysis is required.

This study has been performed in accordance with accepted geotechnical engineering practice using the standard of care and skill currently exercised by geotechnical engineers practicing in this area. No warranty, expressed or implied, is made or intended. This report has been prepared exclusively for the specified client; project and client's authorized project team for use in preparing the appropriate design and construction documents for this project. This report may be included in the construction documents for this project provided the report is reproduced in its entirety. This report shall not be reproduced or used for any other purpose without the express written consent of Frost GeoSciences, Inc.


ILLUSTRATIONS

Vicinity Map Boring Location Plan

FGS Project No: FGS-G21116


VICINITY MAP

FGS Project No: FGS-G21116

BORING PLAN

FGS Project No: FGS-G21116

Geotechnical • Construction Materials • Geologic • Environmental

APPENDIX "A"

Boring Logs PVR Values Symbol Key Sheet

FGS Project No.: FGS-G21116

BORING LOGS

FGS Project No.: FGS-G21116

										LO	GC)F I	BORING				
					PF	ROJE	ECT		r Spring	g Mea	adows	5	PROJECT NO.:	FGS-G21116			
	5PDC	<u>م ر</u>						FM					BORING NO.: DRILLING DATE:	<u>B-01</u>			
		gic •	eoScien Environmen					New Braunfels, TX					SURFACE ELEVATION:	8/23/2021			
		Geo	technical		С	.IEN	T:	Plut	e Grou	р			· · · · · · · · · · · · · · · · · · ·	PAGE 1 of 1			
	FIE	ELC	DATA			LA	٩ВО	RATO	DRY D	ATA			DRILLING METHOD(S):				
						ERB							Dry auger drilling techniques were used to the termination	on depth of the boring.			
SOIL SYMBOL	DEPTH (FT)	SAMPLES N. BLOWS/ST P. TONS/SQ FT P. TONS/SQ FT P. TONS/SQ FT RQD: % MOISTURE CONTENT (%) MOISTURE CONTENT (%) T T LIQUID LIMIT T PLASTIC LIMIT PLASTIC LIM		MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATION: Subsurface water was not encountered either during or upon completion of drilling operations and subsurface water observations.												
S(ä	· · ·	/ ≍ ដ ∺ ಜ ಜ N = 6	≥ 27	LL 66	PL 21	PI 45	52	SQF	E F	ŭ€	Σ	DESCRIPTION OF STI	RATUM			
	-		N = 29	21		21	43						Dark Brown Clay				
	- 5		N = 21	13	38	9	29						Tan Chalky Clay at 4'				
	-		N = 50/10										Tan Clay with Calcareous				
FROSTLOG FGS-G21116.GPJ FROST.GDT 9/10/21	- 10 - - - 15		N = 50/10	7	21	10	11						Tan Marley Weathered Clay at 11'				
S-G21116.GPJ																	
FROST LOG FG	N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION										REMARKS: GPS 0591995 3284398						

										LO	GC)F	BORING	
			eoScien Environmen		PROJECT: Clear Spring Meadows FM 758 New Braunfels, TX								PROJECT NO.: BORING NO.: DRILLING DATE: SURFACE ELEVATION:	FGS-G21116 B-02 8/23/2021
		Geo	technical		С	.IEN	T:	Plut	e Grou	a			SON ACE ELEVATION.	PAGE 1 of 1
	FIE	ELD	DATA						DRY DA	•			DRILLING METHOD(S):	
						ERB							Dry auger drilling techniques were used to the termination	on depth of the boring.
SOIL SYMBOL	ЕРТН (FT)	PTH (FT) MPLES BLOWS/FT CONSIGA FT CONSIGA FT CONSIGA FT CONSIGA FT CONSIGA FT DISTURE CONTENT (% DISTURE CONTENT (%) LIQUID LIMIT PLASTICITY INDEX PLASTICITY INDEX PLASTICITY INDEX PLASTICITY INDEX PLASTICITY INDEX PLASTICITY INDEX ILURE STRAIN (%) ILURE STRAIN (%) NISINO. 200 SIEVE (%)		NUS NO. 200 SIEVE (%	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.	upon completion of drilling								
sc	DE	\v v	/ ᡓᡓᢅᡣᢅᢘᢅᢘ N = 8	ž	LL	PL	PI	E D D D D D D	O S C	FA	S.F.	Σ	DESCRIPTION OF STI Dark Brown Clay	RATUM
	$ = \frac{1}{\sqrt{2}} \frac{N = 8}{N = 15} $ 24 65 21 44													
	$-5 - \frac{1}{10} N = 23$ 40 10 30												Tan Chalky Clay at 4.5'	
	N = 50/10 9 - 10													
FROSTLOG FGS-G21116.GPJ FROST.GDT 9/10/21	- - — 15	-	N = 52											
FROST LOG FGS	N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION										ı	REMARKS: GPS 0591791 3284602		

										LO	GC)F	BORING					
					PROJECT: Clear Spring Meadows FM 758							3	PROJECT NO.: BORING NO.:	FGS-G21116 B-03				
		gic	Environmer					New Braunfels, TX					DRILLING DATE: SURFACE ELEVATION:	8/23/2021				
			JECHINCAI		С	.IEN	T:	Plut	e Grou	p				PAGE 1 of 1				
	FIE	ELC	DATA										DRILLING METHOD(S): Dry auger drilling techniques were used to the termination	on denth of the boring				
								-				(%)	, , , , , , , , , , , , , , , , , , , ,					
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	a FT CONTENT E CONTENT I LIMIT IC LIMIT		MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATION: Subsurface water was not encountered either during or upon completion of drilling operations and subsurface water observations.												
sc	DE	\A A	/ ፰ ៥ ៥ ៥ N = 8	22	LL 63	PL 20	PI 43	R D D D D	CC STC	FA	S.T.	W	DESCRIPTION OF STI	RATUM				
	-		N = 18										Dark Brown Clay					
	- 5	$-\frac{1}{\sqrt{2}} N = 42$ 14 39 9 30											Tan Chalky Clay at 4.5'					
	- 10		N = 80															
	-										Tan Chalky Clay to Marley Clay at 12'							
171 FKUSI.6UI 9/10/2	- 15	-	N = 50/10	12	62	20	42						Tan Marley Clay					
321116. <u>C</u>																		
										REMARKS: GPS 0591631 3284463								

										LO	GC)F	BORING	
			eoScien		PF	ROJE	ECT:	FM	r Spring 758 / Braur	g Mea	adows		PROJECT NO.: BORING NO.: DRILLING DATE:	FGS-G21116 B-04 8/23/2021
	Geolo	gic = Geo	Environmen technical	ital			- .		- Cress	-			SURFACE ELEVATION:	
									e Grou	•			DRILLING METHOD(S):	PAGE 1 of 1
	FIE		DATA			ERBI	ERG	RAIC					Dry auger drilling techniques were used to the termination	on depth of the boring.
SOIL SYMBOL	DЕРТН (FT)					CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.						
sc	DE		/ żă÷≈2	ž	LL	PL	PI	ЦСА	USTC TSC	FA	S. S.	ž	DESCRIPTION OF ST	RATUM
	$ = \frac{1}{2} = \frac$													
													Tan Clay with Calcareous at 4.5'	
	- 5 - -		N = 25											
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												Tan Weathered Marley Clay at 9'	
FROSTLOG FGS-G21116.GPJ FROST.GDT 9/10/21	- - — 15		N = 50/10											
FROST LOG FGS-(N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION										<u> </u>	REMARKS: GPS 0591492 3284302		

										LO	GC)F	BORING				
			eoScien Environmen		PF	Roje	ECT:	FM	lear Spring Meadows M 758 ew Braunfels, TX				PROJECT NO.: BORING NO.: DRILLING DATE: SURFACE ELEVATION:	FGS-G21116 B-05 8/23/2021			
		Geo	otechnical		СГ	.IEN	T:	Plut	e Grou	a			SURFACE ELEVATION.	PAGE 1 of 1			
	FIE	ELC) DATA						DRY DA				DRILLING METHOD(S):				
				_		ERB IMIT							Dry auger drilling techniques were used to the termination depth of the boring.				
SOIL SYMBOL	DЕРТН (FT)	PTH (F1) MPLES BLOWS/FT BLOWS/SQ FT BLOWS/SQ FT BLOWS/SQ FT BLOWS/SQ FT MIDNIC CONTENT (%) DISTURE CONTENT (%) PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT PLASTIC LIMIT NDS/SQ FT) MMPRESSIVE MMPRE		MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATION: Subsurface water was not encountered either during or upon completion of drilling operations and subsurface water observations.												
sc							CC STC	FA	S.T.	M	DESCRIPTION OF STI	RATUM					
	-		N = 12		66	22	44						Brown Clay				
	- 5	-	N = 34	15	67	23	44						Tan Marley Clay at 4.5'				
	- - - 10 -		N = 50/10									Tan Weathered Marley Clay with Limestone at 7.5'					
FROSTLOG FGS-G21116.GPJ FROST.GDT 9/10/21	- - 15		N = 50/10	5	24	11	13										
N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION											REMARKS: GPS 0591286 3284093						

										LO	G C)F	BORING	
			eoScien Environmen		PF	Roje	ECT	FM	r Spring 758 / Braur	-		5	PROJECT NO.: BORING NO.: DRILLING DATE: SURFACE ELEVATION:	FGS-G21116 B-06 8/23/2021
		Geo	otechnical		С	.IEN	T:	Plut	e Grou	a			SON ACE ELEVATION.	PAGE 1 of 1
	FIE	ELC	DATA						DRY D	•			DRILLING METHOD(S):	
						ERB IMIT						_	Dry auger drilling techniques were used to the termination	on depth of the boring.
SOIL SYMBOL	DEPTH (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % R: 9, R: 00: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ FT)	FAILURE STRAIN (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.	
so	DE	· · ·		ž	LL	PL	PI	RO PO	STI STI	FA	89 80	ž	DESCRIPTION OF STI Brown Clay	RATUM
	-	$ \frac{1}{\sqrt{N}} = 14 $ $ \frac{1}{\sqrt{N}} = 12 $ $ 17 64 20 44 $												
	- 5	$-5 - \frac{1}{\sqrt{1-1}} N = 30$									Gravel layer at 7.5'			
	- 10	= 10 N = 42 28 41 11 30 N = 42 28 41 11 30										Tan Clay with Cal at 8'		
051.GD1 9/10/21											Tan Marley Clay at 12'			
	- 15	+												
-G21116.(
DST LOG	N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION									1	1	1	REMARKS: GPS 0591202 3283850	

										LO	GC)F I	BORING	
					PF	ROJE	ECT		r Spring	g Mea	adows	5	PROJECT NO.:	FGS-G21116
	Eros	¢ F	ieoScier	1795				FM [·]					BORING NO.: DRILLING DATE:	<u>B-07</u>
		gic •	Environme					New	/ Braur	ntels,	IX		SURFACE ELEVATION:	8/23/2021
		Geo	otechnical		С	IEN	т:	Plut	e Grou	р			-	PAGE 1 of 1
	FIE	ELC) DATA			LA	٩ВО	RATO	DRY D	ATA			DRILLING METHOD(S):	
						ERB							Dry auger drilling techniques were used to the termination	on depth of the boring.
SOIL SYMBOL	DEPTH (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % ROD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ FT)	FAILURE STRAIN (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.	upon completion of drilling
sc	ä	· · ·			LL	PL	PI	52	525	Η.	ŭ₽.	Σ	DESCRIPTION OF STI Brown Clay	RATUM
	-	N = 17 $N = 17$ $N = 17$ $N = 17$ $N = 17$											biowin ciay	
	- 5	$5 - \frac{1}{\sqrt{N}} = 43$ 5 19 11 8								Gravel Layer at 7.5'				
	- 10										Tan Clay with Calcareous at 10'			
FROSTLOG FGS-G21116.GPJ FROST.GDT 9/10/21	15		N = 50/10	19	62	20	42						Tan Marley Clay at 12'	
S-G21116.GPJ														
FROST LOG FG	N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION												REMARKS: GPS 0591310 3283910	

										LO	GC)F I	BORING	
			eoScien		PF	ROJE	ECT	FM	r Spring 758 v Braun	_		5	PROJECT NO.: BORING NO.: DRILLING DATE: SURFACE ELEVATION:	FGS-G21116 B-08 8/23/2021
			otechnical		CI	.IEN	т۰	Plut	e Grou	n			SURFACE ELEVATION.	PAGE 1 of 1
	FIE	ELD) DATA						DRY DA	-			DRILLING METHOD(S):	FAGE 1 01 1
						ERB	ERG						Dry auger drilling techniques were used to the termination	on depth of the boring.
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N. BLOWS/FT N: BLOWS/SQ FT T: BLOWS R: % ROD: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ FT)	FAILURE STRAIN (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.	upon completion of drilling
sc	DE	\A A	/ ፰ ៥ ៥ ៥ ៥ N = 11	ž	LL	PL	PI	R C C C C	CC	FA	Se)	M	DESCRIPTION OF STE Brown Clay	RATUM
	N = 24 26 64 20 44													
	- 5	-5 - $-\sqrt{N} = 45$ 44 10 34								Tan Sandy Clay at 7.5'				
	N = 50/10 9 - 10								Tan Clay with Calcareous at 9'					
FROSTLOG FGS-G21116.GPJ FROST.GDT 9/10/21	- - 15	-	N = 50/10										Tan Weathered Clay with Limestone at 14	
S-G2111t														
FROST LOG FG	N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION												REMARKS: GPS 0591450 3284090	

										LO	GC)F I	BORING	
					PF	ROJE	ECT:		r Spring	g Mea	adows	5	PROJECT NO.:	FGS-G21116
	Fros	1	ieoScier	ICES				FM	758 / Braur	folo	тv		BORING NO.: DRILLING DATE:	<u>B-09</u> 8/23/2021
		gic .	Environmen					INCW	Diaui	iieis,			SURFACE ELEVATION:	0/20/2021
					С	IEN	T:	Plut	e Grou	р				PAGE 1 of 1
	FIE	ELD	DATA			LA	٩ВО	RATC	DRY DA	٩ΤΑ			DRILLING METHOD(S):	
				<u> </u>		ERB IMIT							Dry auger drilling techniques were used to the termination	on depth of the boring.
SOIL SYMBOL	DEPTH (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % R2: %	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ FT)	FAILURE STRAIN (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.	upon completion of drilling
sc	B	\A A	/ ≍ ׂ ː ː ː ː ː ː ː ː ː ː ː ː N = 12	27	LL 61	PL 21	PI 40	ЦСЧ	U STC	FA	о <u>е</u>	ž	DESCRIPTION OF ST	RATUM
	N = 12 27 61 21 40 $N = 28$ 1 1 1 1 1 1 1 1 1 1											Brown Clay		
	-5 $ -$								Tan Sandy Clay at 6'					
	N = 50/10											Tan Marley Clay at 9'		
FROST LOG FGS-G21116.GPJ FROST.GDT 9/10/21	N = 50/10 8 22 11 11										Tan Weathered Clay with Limestone at 13	3'		
321116.G														
FROST LOG FGS-(N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION										<u> </u>	<u> </u>	REMARKS: GPS 0591625 3284250	

										LO	G C)F	BORING	
					PF	ROJE	ECT	Clea FM	r Spring 758	g Mea	adows	5	PROJECT NO.: BORING NO.:	FGS-G21116 B-10
		Frost GeoSciences New Braunfels Geologic - Environmental Geotechnical CLIENT: Plute Group FIELD DATA LABORATORY DATA											DRILLING DATE:	8/23/2021
	Geolo	gic = Geo	Environmen technical	ital									SURFACE ELEVATION:	
				-	CL					•				PAGE 1 of 1
	FIE		DATA					RATC		ATA		1	DRILLING METHOD(S): Dry auger drilling techniques were used to the termination	on depth of the boring.
				(%)		ERB						(%		
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % ROD: %	NTENT	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ FT)	FAILURE STRAIN (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.	
sc	Ö		/ ౽ఀఀౣఀౣఀౙ N = 7	ž	LL	PL	PI	10 10 10	SPE	ΕA	<u>се</u>	Σ	DESCRIPTION OF STI Dark Brown Clay	RATUM
	-		N = 13											
												Tan Chalky Clay at 4'		
	- 5 - -		N = 18											
	- 10		N = 61	12	42	11	31						Tan Clay with Calcareous	
.GDI 9/10/21	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -										Tan Weathered Marley Clay at 13'			
3.GPJ FKUSL														
32111(
DST LOG	N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION									<u> </u>	<u> </u>	<u> </u>	REMARKS: GPS 0591825 3284450	

										LO	G C)F	BORING	
	Frost GeoSciences Geologic - Environmental Geotechnical												PROJECT NO.:	FGS-G21116
	Frost GeoSciences Geologic - Environmental New Braunfels												BORING NO.: DRILLING DATE:	<u>B-11</u>
	Geologic • Environmental Geotechnical CLIENT: Plute Group FIELD DATA LABORATORY DATA										ТХ		SURFACE ELEVATION:	8/23/2021
		Geo	technical		СГ	IEN	T:	Plut	e Grou	р			-	PAGE 1 of 1
	FIE	ELD	DATA			LA	٩BO	RATO	DRY D	ATA			DRILLING METHOD(S):	
						ERB IMIT							Dry auger drilling techniques were used to the termination	on depth of the boring.
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SG FT T: BLOWS R: % R: 0.%	MOISTURE CONTENT (%)		PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ FT)	FAILURE STRAIN (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.	upon completion of drilling
Ň	<u> </u>								JUD	Ē	õЩ	Σ	DESCRIPTION OF STI Dark Brown Clay	RATUM
	-	$ = \frac{1}{\sqrt{N}} = 10 $ $ = \frac{25}{\sqrt{N}} = 11 $ $ = \frac{1}{\sqrt{N}} = 11 $												
													Tan Chalky Clay at 4'	
	- 5 - -	-5 - - - - - - - - - -												
	-	-	N = 53											
													Tan Clay with Calcareous	
FROSTLOG FGS-G21116.GPJ FROST.GDT 9/10/21	- - 15	-	N = 46	22	43	12	31							
S-G21116.G														
FROST LOG FG	N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION											<u>.</u>	REMARKS: GPS 059185 3284225	

										LO	GC)F	BORING	
			eoScien Environmen		PF	ROJE	ECT:	FM	r Spring 758 ⁄ Braur	_		5	PROJECT NO.: BORING NO.: DRILLING DATE:	FGS-G21116 B-12 8/23/2021
		Geo	technical	Lai	СІ	.IEN	т٠	Plut	e Grou	n			SURFACE ELEVATION:	PAGE 1 of 1
	FIE	ELD	DATA						DRY DA	•			DRILLING METHOD(S):	FAGE 1 01 1
						ERB							Dry auger drilling techniques were used to the termination	on depth of the boring.
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % RDD: %	MOISTURE CONTENT (%)		PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ FT)	FAILURE STRAIN (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.	upon completion of drilling
sc	DE	\§	/ ≍ёёёёё́ N = 3	Ŭ	LL	PL	PI	ЦСС	012E	FA	N.F.	M	DESCRIPTION OF STI Dark Brown Clay	RATUM
	-		N = 4	15	62	20	42							
													Tan Clay with Calcareous at 4.5'	
	- 5 - N = 33 													
	= 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10												Tan Marley Weathered Clay with Limesto	ne at 8.5'
FROSTLOG FGS-G21116.GPJ FROST.GDT 9/10/21	- - - 15		N = 50/10											
FROST LOG FGS	N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION										1	I	REMARKS: GPS 0591695 3284095	

										LO	GC)F I	BORING		
	Frost GeoSciences Geologic - Environmental Geotechnical											5	PROJECT NO.: BORING NO.:	FGS-G21116 B-13	
	Frost GeoSciences Geologic - Environmental New Braunfe										тх		DRILLING DATE:	8/23/2021	
	Geolo	gic • Geo	Environmen technical	ital						,	.,,		SURFACE ELEVATION:		
					С	IEN	T:	Plut	e Grou	р				PAGE 1 of 1	
	FIE	ELC) DATA			LA	٩ВО	RATC	DRY D	ATA			DRILLING METHOD(S):		
						ERB							Dry auger drilling techniques were used to the termination	on depth of the boring.	
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: M ROD: %	MOISTURE CONTENT (%)		PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ FT)	FAILURE STRAIN (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.	upon completion of drilling	
SC	Ö	$\frac{ }{ } \frac{\langle g \rangle}{z} \stackrel{z}{=} \stackrel{z}{=} \stackrel{z}{=} \stackrel{z}{\otimes} \stackrel{z}{=} \frac{ }{ } \stackrel{E}{=} }{ } \frac{ }{ } \stackrel{E}{=} }{ } \frac{\langle g \rangle}{z} \stackrel{z}{=} \stackrel{z}{=} \stackrel{z}{=} \frac{\langle g \rangle}{z} \stackrel{z}{=} \frac{ }{ $						52	SSE	Ε¢	ŭ€	Σ	DESCRIPTION OF STRATUM Dark Brown Clay		
	N = 4 25 64 22 42 $N = 5$ $N = 5$														
	- 5		N = 30	14	14 44 12 32							Tan Clay with Calcareous at 5'			
	- 10										Tan Marley Weathered Clay with Limesto	ne at 9'			
FROSTLOG FGS-G21116.GPJ FROST.GDT 9/10/21	- - 15	-	N = 50/10	11											
FROST LOG FGS-(N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION									<u> </u>	<u> </u>	REMARKS: GPS 0591495 3283900			

										LO	GC)F	BORING	
			eoScien Environmen		PF	Roje	ECT	FM	r Spring 758 / Braur	_		5	PROJECT NO.: BORING NO.: DRILLING DATE: SURFACE ELEVATION:	FGS-G21116 B-14 8/23/2021
		Geo	technical		CL	.IEN	T:	Plut	e Grou	a			SURFACE ELEVATION.	PAGE 1 of 1
	FIE	ELC	DATA						DRY D	•			DRILLING METHOD(S):	
				(%)		ERB		_				()	Dry auger drilling techniques were used to the termination	
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N: BLOWS/FT P: TONS/SQ FT T: BLOWS R: % ROD: %	NTENT	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ FT)	FAILURE STRAIN (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.	upon completion of drilling
so	DE	_ \ _ /	/ ż ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː	ž	LL	PL	PI	DR PO	CC ST C	FA	S.F.	Σ	DESCRIPTION OF STI Dark Brown Clay	RATUM
	-		N = 8	20	64	23	41							
													Tan Clay with Calcareous at 4.5'	
	- 5 - 													
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												Tan Marely Clay with Weathered Limesto	ne at 9'
FROSTLOG FGS-G21116.GPJ FROST.GDT 9/10/21	- - — 15	-	N = 50/10											
FROST LOG FGS-	N - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - TXDOT CONE PENETRATION RESISTANCE R - ROCK CORE RECOVERY RQD - ROCK QUALITY DESIGNATION										<u> </u>	<u> </u>	REMARKS: GPS 0591450 3283795	

	LOG OF BORING													
	Frost GeoSciences				PROJECT: Clear Spring Meadows FM 758 New Braunfels, TX					_		5	PROJECT NO.: BORING NO.: DRILLING DATE: SURFACE ELEVATION:	FGS-G21116 B-15 8/23/2021
		Geo	otechnical		CLIENT: Plute Group					a			PAGE 1 of 1	
	FIE	ELC	DATA		LABORATORY DATA					-			DRILLING METHOD(S):	
				(%)		ERB		_				()	Dry auger drilling techniques were used to the termination	
SOIL SYMBOL	DЕРТН (FT)	SAMPLES	N. BLOWS/FT P: TONS/SQ FT T: BLOWS R: % ROD: %	NTENT	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH (TONS/SQ FT)	FAILURE STRAIN (%)	CONFINING PRESSURE (POUNDS/SQ IN)	MINUS NO. 200 SIEVE (%)	SUBSURFACE WATER INFORMATI Subsurface water was not encountered either during or operations and subsurface water observations.	
so	DE	<u> </u>	/ ż ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː	22	LL 63	PL 19	PI 44	DR PO	CC STC	FA	S.F.	MII	DESCRIPTION OF STI Dark Brown Clay	RATUM
	-		N = 9											
	-	-											Tan Clay with Calcareous at 4.5'	
	- 5 - -		N = 33	25	44	12	32							
	- - 10 -		N = 49										Tan Marley Clay with Weathered Limesto	– – – – – – – – – – – – – – – – – – –
FROSTLOG FGS-G21116.GPJ FROST.GDT 9/10/21	- - — 15		N = 50/10	11	40	11	29							
FROST LOG FGS-C	P - PC T - TX R - RC	DCK	DARD PEN ET PENET I CONE PE CORE RE OCK QUALI	ROME ENETE COVE	ETER RATIO ERY	RES ON R	SISTA ESIS	NCE		<u> </u>	<u> </u>		REMARKS: GPS 0591410 3283700	

This log is not valid if separated from the report.

PVR VALUES

	PV	R Calcul	ator		
	Frost	GeoScienc	es, Inc.		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
				DOWG	
Project Name:			RING MEA	DOWS	
Project Location:		F. M. 758		EVAC	
Project City:			UNFELS, T	EAAS	
Project Number:		FGS-G-211	16		
Boring Number:		B - 1			
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16
Surcharge Pressure:		Bottom			
Surcharge Pressure: Stratum	1.00 Plasticity	-		ating, C _w :	
		Bottom			
Stratum	Plasticity Index 45	Bottom Depth (feet) 4.0	Mo Dry X	Disture Cond	ition
Stratum	Plasticity Index	Bottom Depth (feet)	Mo	Disture Cond	ition
Stratum	Plasticity Index 45	Bottom Depth (feet) 4.0	Mo Dry X	Disture Cond	ition
Stratum I II	Plasticity Index 45 29	Bottom Depth (feet) 4.0 6.0	Mo Dry X	Disture Cond Average	ition
Stratum I II III	Plasticity Index 45 29 29	Bottom Depth (feet) 4.0 6.0 10.0	Mo Dry X	Disture Cond Average	ition
Stratum I II III IV	Plasticity Index 45 29 29 11	Bottom Depth (feet) 4.0 6.0 10.0 12.0	Mo Dry X	Disture Cond Average	ition Optimum
Stratum I II III IV V	Plasticity Index 45 29 29 11	Bottom Depth (feet) 4.0 6.0 10.0 12.0	Mo Dry X	Disture Cond Average	ition Optimum

PVR R	esults
PVR = 2.24	4 inches
Effective Plas	ticity Index
BRAB	PCI 33
Soil Suppo	rt Index
BRAB 0.67	PCI 0.80
Soil/Climatic R	ating Factor
$1 - C_w = 0.20$	

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use $PI = 8$ for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcul	lator		
	Frost	GeoSciend	ces, Inc.		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Den in et Nemen				DOWG	
Project Name:		CLEAR SP F. M. 758	RING MEA	DOWS	
Project Location: Project City:			UNFELS, T	EVAS	
			,	EAAS	
Project Number:		FGS-G-211	16		
Boring Number:		B - 2			
		_			
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16
Surcharge Pressure:	1.00	psi Bottom	Climatic R	ating, C _w :	16
Surcharge Pressure: Stratum	1.00 Plasticity	- -		ating, C _w :	
		Bottom			ition
	Plasticity	Bottom Depth	Mo	oisture Cond	ition
Stratum	Plasticity Index	Bottom Depth (feet)	Mo	oisture Cond	ition
Stratum	Plasticity Index 44	Bottom Depth (feet) 4.0	Mo Dry X	oisture Cond	
Stratum I II	Plasticity Index 44 30	Bottom Depth (feet) 4.0 6.0	Mo Dry X	isture Cond Average	ition
Stratum I II III	Plasticity Index 44 30 30	Bottom Depth (feet) 4.0 6.0 10.0	Mo Dry X	oisture Cond Average	ition
Stratum I II III IV	Plasticity Index 44 30 30 30 30	Bottom Depth (feet) 4.0 6.0 10.0 12.0	Mo Dry X	oisture Cond Average	ition Optimum
Stratum I II III IV V	Plasticity Index 44 30 30 30 30	Bottom Depth (feet) 4.0 6.0 10.0 12.0	Mo Dry X	oisture Cond Average	ition Optimum

PVR Results				
PVR = 2.32	inches			
Effective Plastic	ity Index			
BRAB 44	PCI 36			
Soil Support	Index			
BRAB 0.68	PCI 0.78			
Soil/Climatic Rat	ing Factor			
$1 - C_w = 0.22$]			

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use $PI = 8$ for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcul	lator			
	Frost	GeoScienc	ces, Inc.			
	134	02 Western	Oak			
	Helo	otes, Texas	78023			
				DOWG		
Project Name:			RING MEA	DOWS		
Project Location:		F. M. 758	INCELC T	EVAC		
Project City:			UNFELS, T	EAAS		
Project Number:		FGS-G-211	.16			
Boring Number:		B - 3				
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16	
	1	Bottom				
Stratum	Plasticity			oisture Cond	ndition	
	Index	(feet)	Dry	Average	Optimum	
Ι	43	4.0	Х			
II	30	6.0	Х			
III	20	10.0		v		
	30	10.0		Х		
IV	30 30	10.0		X X		
				_	X	
IV	30	12.0		_	X	
IV V	30	12.0		_	X	

PVR Results				
PVR = 2.37	inches			
Effective Plasti	city Index			
BRAB 43	PCI 36			
Soil Suppor	t Index			
BRAB 0.69	PCI 0.77			
Soil/Climatic Ra	ting Factor			
$1 - C_w = 0.23$				

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use $PI = 8$ for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV.	R Calcu	lator		
	Frost	GeoScien	ces, Inc.		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Den in et Nemen			DINC MEA	DOWG	
Project Name:		CLEAR SP F. M. 758	RING MEA	DOWS	
Project Location: Project City:			UNFELS, T	EVAS	
			,	EAAS	
Project Number:		FGS-G-211	16		
Boring Number:		B - 4			
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16
					10
		Bottom			
Stratum	Plasticity	Depth		oisture Cond	ition
	Index	Depth (feet)	Dry	oisture Condi Average	ition
I	Index 45	Depth (feet) 4.0	Dry X	1	
	Index	Depth (feet)	Dry	1	ition
I	Index 45	Depth (feet) 4.0	Dry X	1	ition
I II	Index 45 30	Depth (feet) 4.0 6.0	Dry X	Average	ition
I II III IV V	Index 45 30 13	Depth (feet) 4.0 6.0 9.0	Dry X	Average X	ition
I II III IV	Index 45 30 13 13	Depth (feet) 4.0 6.0 9.0 12.0	Dry X	Average X	ition Optimum
I II III IV V	Index 45 30 13 13	Depth (feet) 4.0 6.0 9.0 12.0	Dry X	Average X	ition Optimum

PVR Re	esults
PVR = 2.04	4 inches
Effective Plas	ticity Index
BRAB 45	PCI 30
Soil Suppo	rt Index
BRAB 0.67	PCI 0.85
Soil/Climatic R	ating Factor
$1 - C_w = 0.15$	5

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use PI = 8 for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcul	lator		
	Frost	GeoSciend	ces, Inc.		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Duciest Normer		CLEAD CD	DINC MEA	DOWS	
Project Name: Project Location:		CLEAR SP F. M. 758	RING MEA	DOWS	
Project City:			UNFELS, T	EXAS	
			,	LAAS	
Project Number:		FGS-G-211	16		
Boring Number:		B - 5			
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16
		Bottom			
Surcharge Pressure: Stratum	Plasticity	Bottom Depth	Mo	ating, C _w :	ition
		Bottom			ition
Stratum	Plasticity Index 44	Bottom Depth (feet) 4.0	Mo Dry X	oisture Cond	ition
Stratum	Plasticity Index	Bottom Depth (feet)	Mo	isture Cond Average	ition
Stratum	Plasticity Index 44	Bottom Depth (feet) 4.0	Mo Dry X	oisture Cond	ition
Stratum I II	Plasticity Index 44 44	Bottom Depth (feet) 4.0 6.0	Mo Dry X	isture Cond Average	
Stratum I II III IV V	Plasticity Index 44 44 13	Bottom Depth (feet) 4.0 6.0 10.0	Mo Dry X	oisture Cond Average	ition
Stratum I II III IV	Plasticity Index 44 44 13 13	Bottom Depth (feet) 4.0 6.0 10.0 12.0	Mo Dry X	oisture Cond Average	ition Optimum
Stratum I II III IV V	Plasticity Index 44 44 13 13	Bottom Depth (feet) 4.0 6.0 10.0 12.0	Mo Dry X	oisture Cond Average	ition Optimum

PVR Results		
PVR = 2.27	inches	
Effective Plasti	city Index	
BRAB 44	PCI 31	
Soil Suppor	t Index	
BRAB 0.68	PCI 0.82	
Soil/Climatic Ra	ting Factor	
$1 - C_w = 0.18$		

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use PI = 8 for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcul	lator		
		GeoScieno	,		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Project Name:		CLEAR SP	RING MEA	DOWS	
Project Location:		F. M. 758		DO W3	
Project City:			UNFELS, T	EXAS	
Project Number:		FGS-G-211			
Boring Number:		B - 6			
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16
Surcharge Pressure:	1.00	psi Bottom	Climatic R	ating, C _w :	16
Surcharge Pressure: Stratum	1.00 Plasticity	Bottom		Cating, C _w :	
	•				ition
	Plasticity	Bottom Depth	Mo	Disture Cond	ition
Stratum	Plasticity Index	Bottom Depth (feet)	Mo Dry	Disture Cond	ition
Stratum	Plasticity Index 44	Bottom Depth (feet) 4.0	Mo Dry X	Disture Cond	ition
Stratum I II	Plasticity Index 44 8	Bottom Depth (feet) 4.0 6.0	Mo Dry X	Disture Cond Average	
Stratum I II III	Plasticity Index 44 8 30	Bottom Depth (feet) 4.0 6.0 10.0	Mo Dry X	Disture Cond Average	ition
Stratum I II III IV	Plasticity Index 44 8 30 30	Bottom Depth (feet) 4.0 6.0 10.0 12.0	Mo Dry X	Disture Cond Average	ition Optimum
Stratum I II III IV V	Plasticity Index 44 8 30 30	Bottom Depth (feet) 4.0 6.0 10.0 12.0	Mo Dry X	Disture Cond Average	ition Optimum

PVR Results		
PVR = 1.97	inches	
Effective Plastici	ty Index	
BRAB 44	PCI 33	
Soil Support I	Index	
BRAB 0.68	PCI 0.80	
Soil/Climatic Ration	ng Factor	
$1 - C_w = 0.20$]	

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use $PI = 8$ for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcul	lator		
	Frost	GeoScienc	es, Inc.		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
				DOWG	
Project Name:		CLEAR SP F. M. 758	RING MEA	DOWS	
Project Location: Project City:			UNFELS, T	EVAS	
			,	EAAS	
Project Number:		FGS-G-211	16		
Boring Number:		B -7			
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16
Surcharge Pressure:		Bottom			
Surcharge Pressure: Stratum	1.00 Plasticity	-		ating, C _w :	
		Bottom			ition
Stratum	Plasticity Index 44	Bottom Depth (feet) 4.0	Mo Dry X	Disture Cond	ition
Stratum	Plasticity Index	Bottom Depth (feet)	Mo	Disture Cond	ition
Stratum	Plasticity Index 44	Bottom Depth (feet) 4.0	Mo Dry X	Disture Cond	ition
Stratum I II	Plasticity Index 44 8	Bottom Depth (feet) 4.0 7.0	Mo Dry X	Disture Cond Average	
Stratum I II III	Plasticity Index 44 8 30	Bottom Depth (feet) 4.0 7.0 10.0	Mo Dry X	Disture Cond Average	ition
Stratum I II III IV	Plasticity Index 44 8 30 42	Bottom Depth (feet) 4.0 7.0 10.0 12.0	Mo Dry X	Disture Cond Average	ition Optimum
Stratum I II III IV V	Plasticity Index 44 8 30 42	Bottom Depth (feet) 4.0 7.0 10.0 12.0	Mo Dry X	Disture Cond Average	ition Optimum

PVR Re	esults
PVR = 2.13	inches
Effective Plast	ticity Index
BRAB 44	PCI 34
Soil Suppor	rt Index
BRAB 0.68	PCI 0.79
Soil/Climatic R	ating Factor
$1 - C_w = 0.21$	

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use PI = 8 for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcul	lator		
	Frost	GeoScien	ces, Inc.		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Duciest Normer			DINC MEA	DOWS	
Project Name: Project Location:		CLEAR SP F. M. 758	RING MEA	DOWS	
Project City:			UNFELS, T	EVAS	
			,	LAAS	
Project Number:		FGS-G-211	16		
Boring Number:		B -8			
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16
Surcharge Pressure:		Bottom			
Surcharge Pressure: Stratum	1.00 Plasticity	-		Cating, C _w :	
		Bottom			ition
Stratum	Plasticity Index 44	Bottom Depth (feet) 4.0	Mo Dry X	Disture Cond	ition
Stratum	Plasticity Index	Bottom Depth (feet)	Mo Dry	Disture Cond	
Stratum	Plasticity Index 44	Bottom Depth (feet) 4.0	Mo Dry X	Disture Cond	ition
Stratum I II	Plasticity Index 44 34	Bottom Depth (feet) 4.0 7.0	Mo Dry X	Disture Cond Average	ition
Stratum I II III	Plasticity Index 44 34 30	Bottom Depth (feet) 4.0 7.0 10.0	Mo Dry X	Disture Cond Average	ition
Stratum I II III IV	Plasticity Index 44 34 30 30	Bottom Depth (feet) 4.0 7.0 10.0 12.0	Mo Dry X	Disture Cond Average	ition Optimum
Stratum I II III IV V	Plasticity Index 44 34 30 30	Bottom Depth (feet) 4.0 7.0 10.0 12.0	Mo Dry X	Disture Cond Average	ition Optimum

PVR Results		
PVR = 2.50	inches	
Effective Plastici	ty Index	
BRAB 44	PCI 37	
Soil Support I	Index	
BRAB 0.68	PCI 0.77	
Soil/Climatic Ration	ng Factor	
$1 - C_w = 0.23$]	

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use $PI = 8$ for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcul	lator		
	Frost	GeoScienc	ces, Inc.		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Duciest Nerves		CLEAD CD		DOWS	
Project Name:		CLEAR SP F. M. 758	RING MEA	DOWS	
Project Location: Project City:			UNFELS, T	EVAS	
			,	EAAS	
Project Number:		FGS-G-211	16		
Boring Number:		B -9			
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16
Surcharge Pressure:		Bottom			
Surcharge Pressure: Stratum	1.00 Plasticity	ŕ		ating, C _w :	
		Bottom			ition
	Plasticity Index 40	Bottom Depth (feet) 4.0	Mo	Disture Cond	ition
Stratum	Plasticity Index	Bottom Depth (feet)	Mo Dry	Disture Cond	ition
Stratum	Plasticity Index 40	Bottom Depth (feet) 4.0	Mo Dry X	Disture Cond	ition
Stratum I II	Plasticity Index 40 12	Bottom Depth (feet) 4.0 8.0	Mo Dry X	Disture Cond Average	
Stratum I II III	Plasticity Index 40 12 20	Bottom Depth (feet) 4.0 8.0 10.0	Mo Dry X	Disture Cond Average	ition
Stratum I II III IV	Plasticity Index 40 12 20 20	Bottom Depth (feet) 4.0 8.0 10.0 12.0	Mo Dry X	Disture Cond Average	ition Optimum
Stratum I II III IV V	Plasticity Index 40 12 20 20	Bottom Depth (feet) 4.0 8.0 10.0 12.0	Mo Dry X	Disture Cond Average	ition Optimum

PVR Results		
PVR = 1.47	inches	
Effective Plasti	city Index	
BRAB 40	PCI 26	
Soil Suppor	t Index	
BRAB 0.72	PCI 0.88	
Soil/Climatic Ra	ting Factor	
$1 - C_w = 0.12$		

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use PI = 8 for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcul	lator		
	Frost	GeoSciend	ces, Inc.		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Duciest Normer			RING MEA	DOWS	
Project Name: Project Location:		CLEAR SP F. M. 758	KINU MEA	DOWS	
Project City:			UNFELS, T	EXAS	
			,	LAAS	
Project Number:		FGS-G-211	16		
Boring Number:		B -10			
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16
Surcharge Pressure:		Bottom			
Surcharge Pressure: Stratum	1.00 Plasticity	-		Cating, C _w :	
		Bottom			ition
Stratum	Plasticity Index 42	Bottom Depth (feet) 4.0	Mo Dry X	Disture Cond	ition
Stratum	Plasticity Index	Bottom Depth (feet)	Mo Dry	Disture Cond	ition
Stratum	Plasticity Index 42	Bottom Depth (feet) 4.0	Mo Dry X	Disture Cond	ition
Stratum I II	Plasticity Index 42 30	Bottom Depth (feet) 4.0 8.0	Mo Dry X	Disture Condi Average	
Stratum I II III	Plasticity Index 42 30 31	Bottom Depth (feet) 4.0 8.0 10.0	Mo Dry X	Disture Condi Average	ition
Stratum I II III IV	Plasticity Index 42 30 31 25	Bottom Depth (feet) 4.0 8.0 10.0 12.0	Mo Dry X	Disture Condi Average	ition Optimum
Stratum I II III IV V	Plasticity Index 42 30 31 25	Bottom Depth (feet) 4.0 8.0 10.0 12.0	Mo Dry X	Disture Condi Average	ition Optimum

PVR Results		
PVR = 2.31 inches		
Effective Plasticity Index		
BRABPCI4234		
Soil Support Index		
BRAB PCI 0.70 0.79		
Soil/Climatic Rating Factor		
$1 - C_w = 0.21$		

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use $PI = 8$ for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcu	lator		
		GeoScien	,		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Project Name:		CI EAR SP	RING MEA	DOWS	
Project Location:		F. M. 758	KING WIEA	DOWS	
Project City:			UNFELS, T	EXAS	
Project Number:		FGS-G-211			
Boring Number:		B -11			
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16
		Bottom			
Stratum	Stratum Plasticity		Depth Moisture Cond		ition
	Index	(feet)	Dry	Average	Optimum
Ι	41	4.0	Х		
II	16	8.0	Х		
III	16	10.0		X	
IV	31	12.0		Х	
V	31	15.0			X
VI					
VII					

PVR Results		
PVR = 1.73	inches	
Effective Plasticit	y Index	
BRAB	PCI 29	
Soil Support I	ndex	
BRAB 0.71	PCI 0.86	
Soil/Climatic Ratin	ng Factor	
$1 - C_w = 0.14$		

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use PI = 8 for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcul	ator		
	Frost	GeoSciend	es, Inc.		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Den in et Neren et				DOWG	
Project Name: Project Location:		CLEAR SP F. M. 758	RING MEA	DOWS	
Project City:			UNFELS, T	EXVE	
			,	LAAS	
Project Number:		FGS-G-211	16		
Boring Number:		B -12			
Surcharge Pressure:	1.00	psi	Climatic R	ating, C _w :	16
		Bottom			
Stratum	Plasticity	Depth	-	oisture Condi	
	Index	(feet)	Dry	Average	Optimum
I					Optimum
-	42	4.0	Х		Optimum
I	42 30	4.0 8.0	X X		Optillull
-				X	
II	30	8.0		X X X	
II III IV V	30 12	8.0 10.0			X
II III IV	30 12 12	8.0 10.0 12.0			
II III IV V	30 12 12	8.0 10.0 12.0			

PVR Results		
PVR = 2.17	inches	
Effective Plast	icity Index	
BRAB 42	PCI 30	
Soil Suppor	t Index	
BRAB 0.70	PCI 0.83	
Soil/Climatic Ra	ating Factor	
1 - C _w = 0.17		

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use PI = 8 for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcul	lator		
	Frost	GeoSciend	ces, Inc.		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Duciest Normer		CLEAD CD	RING MEA	DOWS	
Project Name: Project Location:		CLEAR SP F. M. 758	KINU MEA	DOWS	
Project City:			UNFELS, T	EXAS	
		FGS-G-211	,		
Project Number:			10		
Boring Number:		B -13			
Surcharge Pressure:	1.00	psi	Climatic R	lating, C _w :	16
		-			10
	<u> </u>	Bottom			
Stratum	Plasticity	Depth	Mo	oisture Cond	
Stratum	Plasticity Index		Mo	Disture Cond	ition
I	Index 42	Depth (feet) 4.0	Dry X		ition
	Index	Depth (feet)	Dry		ition
I	Index 42	Depth (feet) 4.0	Dry X		ition
I II	Index 42 32	Depth (feet) 4.0 8.0	Dry X	Average	
I II III IV V	Index 42 32 15	Depth (feet) 4.0 8.0 10.0	Dry X	Average X	ition
I II III IV V VI	Index 42 32 15 15	Depth (feet) 4.0 8.0 10.0 12.0	Dry X	Average X	ition Optimum
I II III IV V	Index 42 32 15 15	Depth (feet) 4.0 8.0 10.0 12.0	Dry X	Average X	ition Optimum

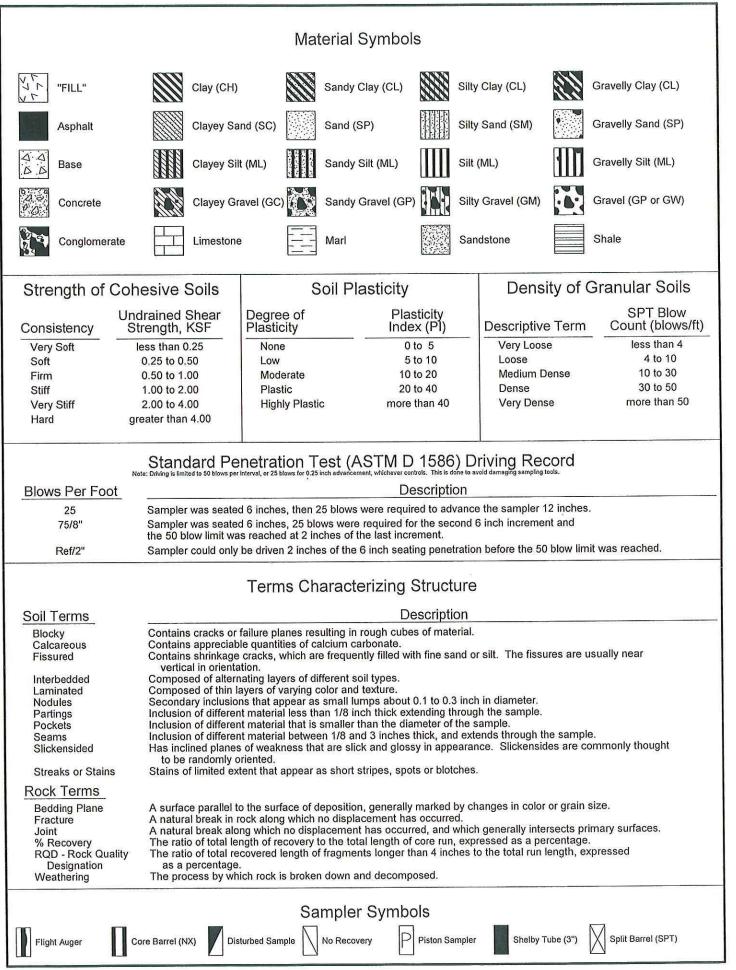
PVR Res	sults
PVR = 2.24	inches
Effective Plastic	city Index
BRAB 42	PCI 31
Soil Support	Index
BRAB 0.70	PCI 0.83
Soil/Climatic Ra	ting Factor
1 - C _w = 0.17	

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use PI = 8 for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

	PV	R Calcul	lator		
		GeoScienc	,		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Project Name:		CLEAR SP	RING MEA	DOWS	
Project Location:		F. M. 758		DO W3	
Project City:			UNFELS, T	EXAS	
Project Number:		FGS-G-211			
Boring Number:		B -14	10		
Surcharge Pressure:	1.00	psi	Climatic R	tating, C _w :	16
Surcharge Pressure:	1.00	psi Bottom	Climatic R	Cating, C _w :	16
Surcharge Pressure: Stratum	1.00 Plasticity	Bottom		tating, C _w :	
	•				ition
	Plasticity	Bottom Depth	Me	oisture Cond	ition
Stratum	Plasticity Index	Bottom Depth (feet)	Me Dry	oisture Cond	ition
Stratum	Plasticity Index 41	Bottom Depth (feet) 4.0	Me Dry X	oisture Cond	ition
Stratum I II	Plasticity Index 41 32	Bottom Depth (feet) 4.0 9.0	Me Dry X	Disture Condi Average	ition
Stratum I II III	Plasticity Index 41 32 29	Bottom Depth (feet) 4.0 9.0 10.0	Me Dry X	Disture Condi Average	ition
Stratum I II III IV	Plasticity Index 41 32 29 29 29	Bottom Depth (feet) 4.0 9.0 10.0 12.0	Me Dry X	Disture Condi Average	ition Optimum
Stratum I II III IV V	Plasticity Index 41 32 29 29 29	Bottom Depth (feet) 4.0 9.0 10.0 12.0	Me Dry X	Disture Condi Average	ition Optimum

PVR Results	
PVR = 2.44 inches	
Effective Plasticity Index	
BRABPCI4135	
Soil Support Index	
BRAB PCI 0.71 0.79	
Soil/Climatic Rating Factor	
$1 - C_w = 0.21$	

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use PI = 8 for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.


	PV	R Calcul	lator		
	Frost	GeoScienc	es, Inc.		
	134	02 Western	Oak		
	Helo	otes, Texas	78023		
Project Name:		CLEAD SD	RING MEA	DOWS	
Project Location:		F. M. 758		DOW3	
Project City:			UNFELS, T	EXAS	
Project Number:		FGS-G-211			
Boring Number:		B -15	10		
Surcharge Pressure:	1.00	psi	Climatic R	Rating, C _w :	16
Surcharge Pressure:	1.00	psi Bottom	Climatic R	tating, C _w :	16
Surcharge Pressure: Stratum	• <u> </u>	Bottom		ating, C _w :	
	1.00 Plasticity Index				ition
	Plasticity	Bottom Depth	Me	oisture Cond	ition
Stratum	Plasticity Index	Bottom Depth (feet)	Mo Dry	oisture Cond	ition
Stratum	Plasticity Index 44	Bottom Depth (feet) 4.0	Me Dry X	oisture Cond	
Stratum I II	Plasticity Index 44 32	Bottom Depth (feet) 4.0 9.0	Me Dry X	Disture Cond Average	ition
Stratum I II III	Plasticity Index443229	Bottom Depth (feet) 4.0 9.0 10.0	Me Dry X	Disture Cond Average	ition
Stratum I II III IV	Plasticity Index 44 32 29 29 29	Bottom Depth (feet) 4.0 9.0 10.0 12.0	Me Dry X	Disture Cond Average	ition Optimum
Stratum I II III IV V	Plasticity Index 44 32 29 29 29	Bottom Depth (feet) 4.0 9.0 10.0 12.0	Me Dry X	Disture Cond Average	ition Optimum

PVR Result	ts
PVR = 2.58	inches
Effective Plasticity	Index
BRAB	PCI 36
Soil Support In	dex
BRAB 0.68	PCI 0.77
Soil/Climatic Rating	g Factor
$1 - C_w = 0.23$	

RULES
1.) Depths should not extend greater than 15 feet.
2.) Use only one moisture condition per stratum.
3.) Moisture conditions must be selected using an "x".
4.) Integers or one-half foot intervals must be used.
5.) Use $PI = 8$ for none expansive layers.
6.) DO NOT USE $PI = 0$ FOR NON-EXPANSIVE LAYERS.
7.) Error checking is limited.

SYMBOL KEY

Symbol Key Sheet

APPENDIX "B"

Moisture Density Relationship CBR Test Results Lime / Plastic Index Curve Lime / Unconfined Curve Moisture Density Relationship Tensar Design Analysis

MOISTURE DENSITY

13406 Western Oak Helotes, TX 78023 (210) 372-1315 phone (210) 372-1318 fax

Dry Density Lbs./ft³

90.9

94.0

94.2

Project #: FGS-G21116

<u>% Moisture</u> 19.2%

21.1%

23.1%

Project: CLEAR SPRING MEADOWS

		Report Date:	9/22/2021
		Sample Date:	8/23/2021
Client:	Plute Group		
Report:	ASTM - Standard Proctor	LAB NO:	4102
Material:	Subgrade	Report #:	S1

Moisture-Density Relationship -Subgrade Soil

	100.0		Z	ero A	vir Vo	oids	-		= 2.70
								GS	= 2.70
	99.0								
	98.0				G, =	2.65			
	97.0								
	97.0								
σ	96.0								\vdash
Dry Unit Weight, pcf	95.0								
it Wei					-				
in Uni	94.0								
0	93.0						\rightarrow		-
	92.0			/					
	32.0		7					$\mathbf{\Lambda}$	
	91.0	_	-					\rightarrow	
	90.0								
									1 1
	89.0 18.0%	19.	0% 20	0.0% 21	.0% 22	.0% 23	.0% 24.	.0% 25	.0% 26.0
					Moisture C	ontent, %			

Desc of Rammer:MechanicalPreparation Method:DryRemarks:No comments at this time.

Test Method (As Applicable):

ASTM D-698 A ASTM D-4318 **Test Results**

25.0% 90.0 Optimum = 22.2 Maximum = 94.6 Sieve % Passing 3 inch 100.0% Color: Dark Brown 3/4 inch 100.0% Description: Clay 3/8 inch 100.0% No. 4 100.0% Liquid Limit: 66 48.2% No.10 Plastic Limit: 21 Plasticity Index: No. 40 14.7% 45 No.100 2.8% No.200 1.3%

Location: Project Site

Respectfully Submitted, Frost GeoSciences, Inc.

F.J.Caballero, P. E., Project Manager

THIS REPORT APPLIES ONLY TO THE STANDARDS OR PROCEDURES INDICATED AND TO THE SAMPLE(S) TESTED AND/OR OBSERVED AND ARE NOT NECESSARILY INDICATIVE OF THE QUALITIES OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS OR PROCEDURES, NOR DO THEY REPRESENT AN ONGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE NOT TO BE REPRODUCED WITHOUT PERMISSION.

13406 Western Oak Helotes, TX 78023 (210) 372-1315 phone (210) 372-1318 fax

Dry Density Lbs./ft³

94.1

96.3

95.8

92.7

96.8

Project #: FGS-G21116

<u>% Moisture</u> 18.1%

20.1%

22.0%

Project: CLEAR SPRING MEADOWS

		Report Date:	9/22/2021
		Sample Date:	8/23/2021
Client:	Pulte Group		
Report:	ASTM - Standard Proctor	LAB NO:	4102
Material:	Subgrade	Report #:	S2

Moisture-Density Relationship -Subgrade Soil

	100.0		Ze	ero A	ir Vo	ids			= 2.70
								GS	= 2.70
	99.0				G, = 2	2 65	I		
	98.0				۰, – ۲ ا	2.05			
	96.0								
ţ,	97.0			<u> </u>					
Dry Unit Weight, pcf									
Unit v	96.0								
Dry	95.0			<u> </u>					
	94.0		•					\mathbf{h}	
	93.0							$ \land $	
								4	
	92.0	.0% 18.	.0% 19.	.0% 20	.0% 21.	.0% 22.	.0% 23.	0% 24	.0% 25.0%
			070 22.	2010 22		0.0 11.		070 2.	
					Moisture C	ontent, %			

24.0% Optimum = 20.9 Maximum = Sieve % Passing 3 inch 100.0% Color: Dark Brown 3/4 inch 100.0% Description: Clay 3/8 inch 100.0% No. 4 100.0% Liquid Limit: 61 No.10 52.5% Plastic Limit: 21 Plasticity Index: No. 40 17.2% 40 No.100 2.8% No.200 1.3%

Desc of Rammer:MechanicalPreparation Method:DryRemarks:No comments at this time.

Test Method (As Applicable):

ASTM D-698 A ASTM D-4318

Respectfully Submitted, Frost GeoSciences, Inc.

Location:

Project Site

F.J.Caballero, P. E., Project Manager

THIS REPORT APPLIES ONLY TO THE STANDARDS OR PROCEDURES INDICATED AND TO THE SAMPLE(S) TESTED AND/OR OBSERVED AND ARE NOT NECESSARILY INDICATIVE OF THE QUALITIES OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS OR PROCEDURES, NOR DO THEY REPRESENT AN ONGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE NOT TO BE REPRODUCED WITHOUT PERMISSION.

Test Results

13406 Western Oak Helotes, TX 78023 (210) 372-1315 phone (210) 372-1318 fax

Dry Density Lbs./ft³

94.4

Project #: FGS-G21116

<u>% Moisture</u> 17.0%

Project: CLEAR SPRING MEADOWS

		Report Date: Sample Date:	7/13/2021 7/7/2021
Client:	Pulte Group		
Report:	ASTM - Standard Proctor	LAB NO:	4102
Material:	Subgrade	Report #:	S3

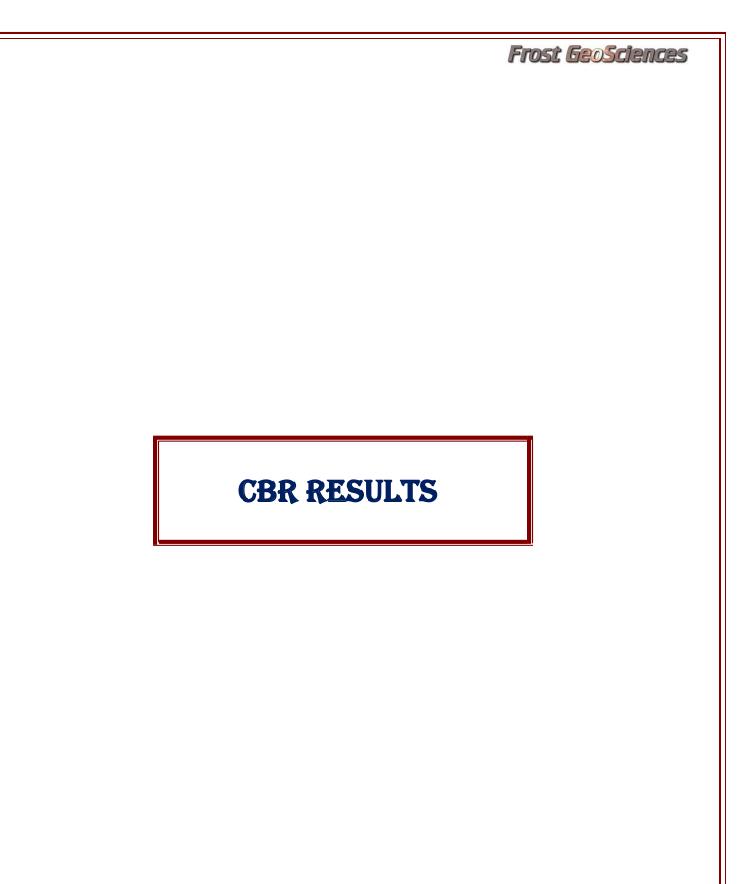
Moisture-Density Relationship -Subgrade Soil

	102.0		Ze	ero A	vir Vo	ids		_	
	101.0		Γ					GS	= 2.70
	101.0		<u> </u>	<u> </u>					\vdash
	100.0				G _c =	2.65			
	99.0		<u> </u>	<u> </u>					\vdash
ht, pcf	98.0								
Dry Unit Weight, pcf									
iny Uni	97.0		 						\vdash
6	96.0								
			/]			$ \rangle$		
	95.0		\vdash	<u> </u>				\land	\vdash
	94.0		۴					$ \land $	
									▶
	93.0 16	.0% 17	7.0% 18	.0% 19	.0% 20.	0% 21	.0% 22	.0% 23	.0% 24.0
					Moisture C	ontent, %			

Desc of Rammer: <u>Mechanical</u> Preparation Method: <u>Dry</u> Remarks: <u>No comments at this time.</u>

Test Method (As Applicable):

ASTM D-698 A ASTM D-4318 **Test Results**


18.9% 97.0 21.0% 96.5 23.0% 93.7 Optimum = 19.5 Maximum = 97.2 Sieve % Passing 3 inch 100.0% Color: Dark Brown 3/4 inch 100.0% Description: Clay 3/8 inch 100.0% No. 4 100.0% Liquid Limit: 61 No.10 49.7% Plastic Limit: 21 Plasticity Index: No. 40 14.7% 40 No.100 2.4% No.200 1.3%

Location: Project Site

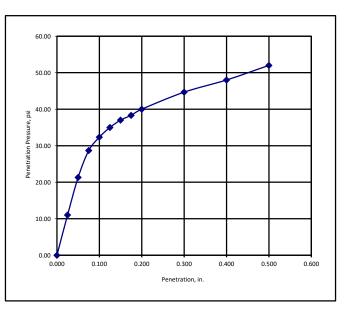
Respectfully Submitted, Frost GeoSciences, Inc.

F.J.Caballero, P. E., Project Manager

THIS REPORT APPLIES ONLY TO THE STANDARDS OR PROCEDURES INDICATED AND TO THE SAMPLE(S) TESTED AND/OR OBSERVED AND ARE NOT NECESSARILY INDICATIVE OF THE QUALITIES OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS OR PROCEDURES, NOR DO THEY REPRESENT AN ONGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE NOT TO BE REPRODUCED WITHOUT PERMISSION.

Frost GeoSciences, Inc. 13406 Western Oak Helotes, Texas 78023

,	CBR (California Bearing Ratio)									
		<u>ASTM D188</u>	<u>33</u>							
Project Name:	CLEAR SPRING MEAI	DOWS	F	Project #: FGS-G21116						
Soil Desc.	Dark Brown Clay CBR	#1								
Tested By:	Miguel Gonzalez Jr.	- 1	Fest Date: 09/07/21							
-										
Compaction Er	nergy: Rammer:	5.5 lbs.	# layers:	3 Blows:	56					
w at compactio	on: 22.20%	Mold Dia. 6	in.	Soil Ht. 4.584 ir).					
Volume	0.075 ft.^3		-	Opt. M.C.	22.2					
	Initial	<u>Final</u>	<u>%S</u>	Opt. Dry Unit wt.	94.6					
Date/Time	9/7/2021 3:20pm	9/10/2021 3:20pm								
Swell Data	0.000	0.055	1.20	Mold #	1					
			-	Surcharge, lbs.	10					
			Initial mass	s of wet soil + mold, lbs.	26.378					
			Final mass	s of wet soil + mold, lbs.	26.638					
				Mass of Mold, lbs.	18.058					
			Initi	al mass of wet soil, lbs.	8.32					
Dry density =	94.5 Comp.	0.99894								
Moisture =	22.6 Points Opt.	0.39061								


ASTM D2216 Moisture Content

<u>Compaction</u>	Project #	Can No.	Wet Wt. (1)	Dry Wt. (2)	Tare Wt. (3)	(1) - (2) = A	(2) - (3) = B	%MC = A/B*100
Before	GS-G2111	6	565.6	508.58	127.58	57.02	381	14.96588
After	GS-G2111	6	676.12	548.85	127.64	127.27	421.21	30.21533

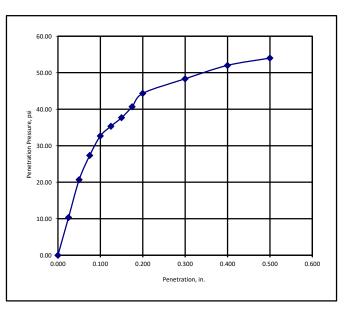
ASTM D1883

Date: <u>9/7/2021</u> Time: <u>3:45pm</u>

Strain, in.	Load, lbs	Stress, psi	CBR
0.000	0.00	0.00	
0.025	33.00	11.00	
0.050	64.00	21.33	
0.075	86.00	28.67	
0.100	97.00	32.33	3.2
0.125	105.00	35.00	
0.150	111.00	37.00	
0.175	115.00	38.33	
0.200	120.00	40.00	2.7
0.300	134.00	44.67	
0.400	144.00	48.00	
0.500	156.00	52.00	

Frost GeoSciences, Inc. 13406 Western Oak Helotes, Texas 78023

,,	CBR (California Bearing Ratio)									
		<u>ASTM D188</u>	<u>33</u>							
Project Name:	CLEAR SPRING MEA	DOWS		Project #: FGS-G21116						
Soil Desc.	Dark Brown Clay CBR	#2								
Tested By:	Miguel Gonzalez Jr			Test Date: 09/07/21						
-										
Compaction Er	nergy: Rammer:	5.5 lbs.	# layers:	3 Blows:	56					
w at compaction	on: 22.20%	Mold Dia. 6	in.	Soil Ht. 4.584 ir	۱.					
Volume	0.075 ft. ³		-	Opt. M.C.	22.2					
	Initial	<u>Final</u>	<u>%S</u>	Opt. Dry Unit wt.	94.6					
Date/Time	97/2021 2.55pm	9/10/2021 2:55pm		-						
Swell Data	0.000	0.045	0.98	Mold #	1					
			•	Surcharge, lbs.	10					
			Initial mass	s of wet soil + mold, lbs.	26.576					
			Final mass	s of wet soil + mold, lbs.	26.642					
				Mass of Mold, lbs.	18.156					
			Init	ial mass of wet soil, lbs.	8.42					
Dry density =	94.5 Comp.	0.99894		<u>_</u>						
Moisture =	22.1 Points Opt.	-0.11828								


ASTM D2216 Moisture Content

<u>Compaction</u>	Project #	Can No.	Wet Wt. (1)	Dry Wt. (2)	Tare Wt. (3)	(1) - (2) = A	(2) - (3) = B	%MC = A/B*100
Before	GS-G2111	6	625.22	548.88	126.68	76.34	422.2	18.08148
After	GS-G2111	6	634.71	539.31	173.54	95.4	365.77	26.08196

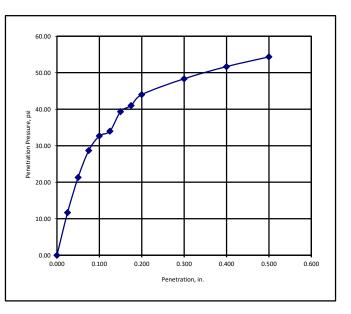
ASTM D1883

Date: <u>9/7/2021</u> Time: <u>3:00pm</u>

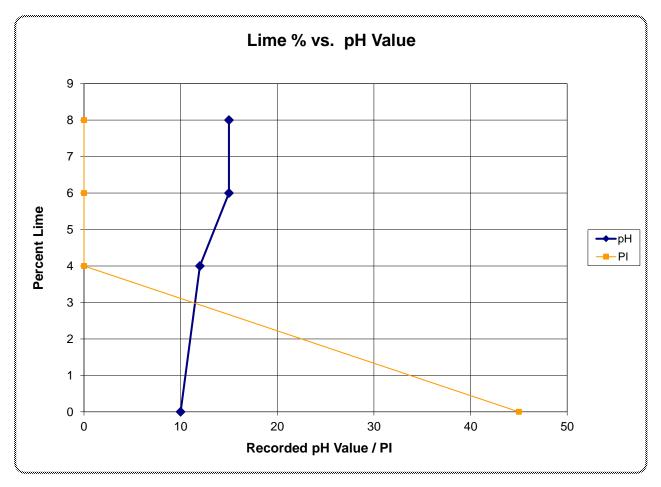
Strain, in.	Load, lbs	Stress, psi	CBR
0.000	0.00	0.00	
0.025	31.00	10.33	
0.050	62.00	20.67	
0.075	82.00	27.33	
0.100	98.00	32.67	3.3
0.125	106.00	35.33	
0.150	113.00	37.67	
0.175	122.00	40.67	
0.200	133.00	44.33	3.0
0.300	145.00	48.33	
0.400	156.00	52.00	
0.500	162.00	54.00	

Frost GeoSciences, Inc. 13406 Western Oak Helotes, Texas 78023

,		CBR (California	Bearin	g Ratio)			
		ASTM	D1883				
Project Name:	CLEAR SPRING MEA	DOWS		Р	roject #: F	GS-G21116	
Soil Desc.	Dark Brown Clay CBR	#3					
Tested By:	Miguel Gonzalez Jr			Т	est Date:	09/07/21	
Compaction Er	on: <u>19.50%</u>	5.5 lbs. Mold Dia. 6	<u>6</u> in.	# layers:	3 Soil Ht.	Blows: 4.584 ir	56 n.
Volume	0.075 ft. ³					Opt. M.C.	19.5
	Initial	<u>Final</u>		<u>%S</u>	Opt.	Dry Unit wt.	97.2
Date/Time	97/2021 3.55pm	9/10/2021 3:55	5pm			<u>.</u>	
Swell Data	0.000	0.06		1.31	_	Mold #	1
					Sur	charge, lbs.	10
				Initial mass	of wet soil	+ mold, lbs.	26.486
				Final mass	of wet soil	+ mold, lbs.	26.676
					Mass o	of Mold, lbs.	18.056
				Initia	al mass of <u>v</u>	vet soil, lbs.	8.43
Dry density = Moisture =	97.1 Comp. 19.7 Points Opt.	0.99897 0.22966					


ASTM D2216 Moisture Content

Compaction	Project #	Can No.	Wet Wt. (1)	Dry Wt. (2)	Tare Wt. (3)	(1) - (2) = A	(2) - (3) = B	%MC = A/B*100
Before	GS-G2111	6	615.22	548.88	128.68	66.34	420.2	15.78772
After	GS-G2111	6	624.71	539.31	178.54	85.4	360.77	23.67159


ASTM D1883

Date: <u>9/7/2021</u> Time: <u>3:20pm</u>

Strain, in.	Load, lbs	Stress, psi	CBR
0.000	0.00	0.00	
0.025	35.00	11.67	
0.050	64.00	21.33	
0.075	86.00	28.67	
0.100	98.00	32.67	3.3
0.125	102.00	34.00	
0.150	118.00	39.33	
0.175	123.00	41.00	
0.200	132.00	44.00	2.9
0.300	145.00	48.33	
0.400	155.00	51.67	
0.500	163.00	54.33	

LIME / PLASTIC INDEX CURVE

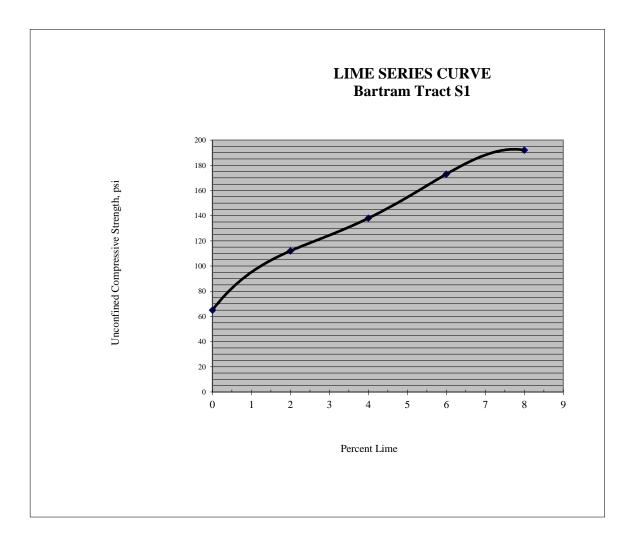
Project Name:CLEAR SPRING MEADOWSProject Number:FGS-G21116Soil Description:Dark Brown ClayS1


_					LIME	LIME
Г	%Lime	рН	PI		6'/,	8'/.
	0	10	45	SET#1	173psi	192psi
	4	12	0			
	6	15	0	SET#2	175psi	192psi
	8	15	0			

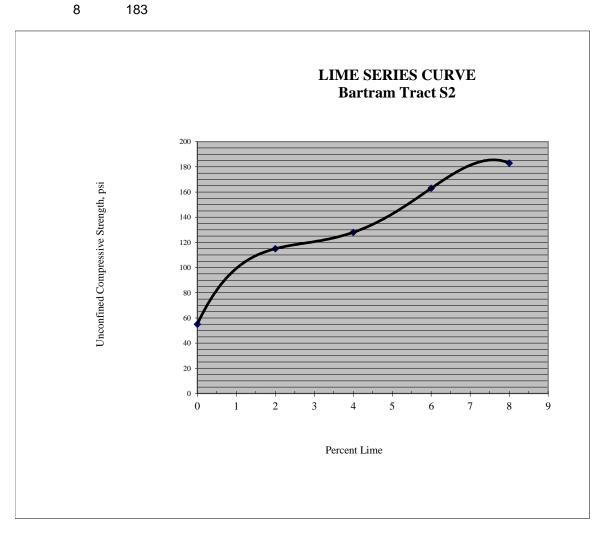
Project Name: CLEAR SPRING MEADOWS Project Number: FGS-G21116 Soil Description:

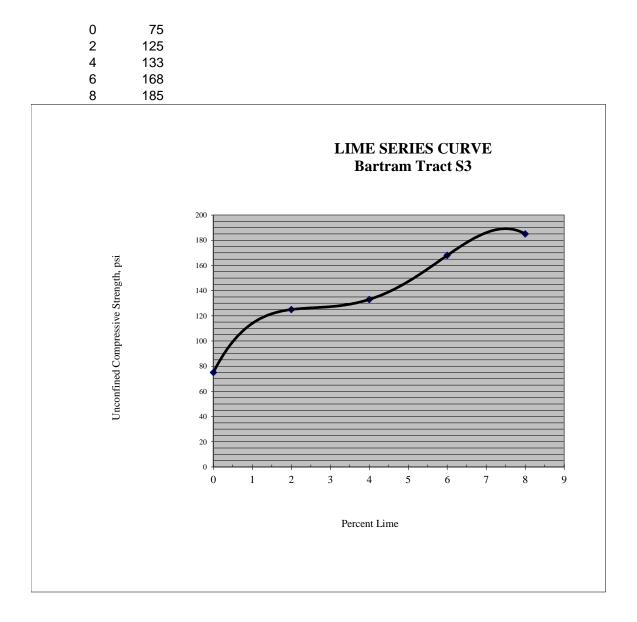
Dark Brown Clay S2

				LIME	LIME
%Lime	pН	PI		6'/,	8'/.
0	10	40	SET#1	163psi	182psi
4	11	0			
6	15	0	SET#2	170psi	183psi
8	15	0			



Project Name:CLEAR SPRING MEADOWSProject Number:FGS-G21116Soil Description:Dark Brown ClayS3


_					LIME	LIME
ſ	%Lime	рН	PI		6'/,	8'/.
	0	10	45	SET#1	173psi	192psi
	4	11	0			
	6	15	0	SET#2	175psi	192psi
	8	15	0			

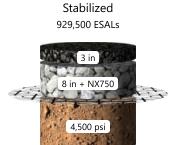

LIME / UNCONFINED STRENGTH CURVE

0 65 2 112 4 138 6 173 8 192

0 55 2 115 4 128 6 163

TENSAR PAVING DESIGN

ONE & TWO FAMILY RESIDENTIAL LOCAL



Asphalt Pavement **Design Analysis**

Design	ONE & TWO FAMILY RESIDENTIAL (LOCAL).	Reference	
Project	CLEAR SPRING MEADOWS	Location	New Braunfels, TX, USA
Customer	PULTE GROUP	Designer	FLORENTINO CABALLERO, P. E.
Company	FROST GEOSCIENCES, Inc.	Date	February 5, 2024

Results

	Thickness	Coeff.	SN
HMA layer 1	3 in	0.440	1.320
Aggregate base (NX750)	8 in	0.271	2.168
Structural number (SN)			3.488

	Thickness	Coeff.	SN
HMA layer 1	3 in	0.440	1.320
Aggregate base	12 in	0.140	1.680
Structural number (SN)			3.000

Unstabilized

340,300 ESALs

3 in

12 in

4,500 psi Store and

Parameters

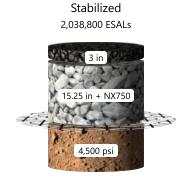
Project Information

Target ESALs	Subgrade resilient modulus	Reliability	Standard deviation	Serviceability	
				Initial	Terminal
100,000	4,500 psi	70%	0.45	4.2	2

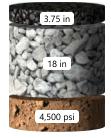
This report was prepared using Tensar+ (2.11.1) \circledcirc 1998-2024 Tensar International Corporation. All rights reserved. Tensar is a registered trademark.

Limitations of this Report You undertake to only use the Tensar+ software tool and its output solely to evaluate the application of Tensar geogrids, and strictly according to the Terms of Use. The suitability of the software output and Tensar International's geogrids for any project is the sole responsibility of you, and your employees, contractors or other third parties who access the Tensar+ software tool and its output. ("Your Associates"). The Tensar+ software output is merely illustrative and is not a detailed design. You will ensure that you and Your Associates have undergoone all necessary training through Tensar International and/or have the necessary expertise and experience to use the Tensar+ software output correctly and safely. Copyright in the Tensar+ software neutron and safely. Copyright in the Tensar+ software neutron and safely. Copyright in the Tensar+ software output telenons to Tensar International's geogrids, and you are fully liable for Your Associates' acts or omissions. The Tensar+ software output does not form the whole or any part of a contract.

RESIDENTIAL COLLECTOR



Asphalt Pavement **Design Analysis**



Design	RESIDENTIAL COLLECTOR	Reference	
Project	CLEAR SPRING MEADOWS	Location	New Braunfels, TX, USA
Customer	PULTE GROUP	Designer	FLORENTINO CABALLERO, P. E.
Company	FROST GEOSCIENCES, Inc.	Date	February 5, 2024

Results

Unstabilized 2,035,800 ESALs

	Thickness	Coeff.	SN		Thickness	Coeff.	SN
HMA layer 1	3 in	0.440	1.320	HMA layer 1	3.75 in	0.440	1.650
Aggregate base (NX750)	15.25 in	0.220	3.355	Aggregate base	18 in	0.140	3.024
Structural number (SN)			4.675	Structural number (SN)			4.674

Parameters

Project Information

Target ESALs	Subgrade resilient modulus	Reliability	Standard deviation	Serviceability	
				Initial	Terminal
2,000,000	4,500 psi	90%	0.45	4.2	2.5

This report was prepared using Tensar+ (2.11.1) © 1998-2024 Tensar International Corporation. All rights reserved. Tensar is a registered trademark.

Limitations of this Report You undertake to only use the Tensar+ software tool and its output solely to evaluate the application of Tensar geogrids, and strictly according to the Terms of Use. The suitability of the software output and Tensar International's geogrids for any project is the sole responsibility of you, and your employees, contractors or other third parties who access the Tensar+ software tool and its output. ("Your Associates"). The Tensar+ software output is merely illustrative and is not a detailed design. You will ensure that you and Your Associates have undergoine all necessary training through Tensar International and/or have the necessary expertise and experience to use the Tensar+ software output correctly and safely. Copyright in the Tensar+ software output telongs to Tensar International except to Your Associates provided it is only disclosed for the purpose of evaluating the commercial application for the use of Tensar International's geogrids, and you are fully liable for Your Associates' acts or omissions. The Tensar+ software output does not form the whole or any part of a contract.