Northlake Lift Station & Forcemain Project

Prepared For: San Antonio Water System 2800 US HWY 281 N San Antonio, TX 78212 210-704-7297 www.SAWS.org

Prepared By: Utility Engineering Group, PLLC 191 N. Union Avenue New Braunfels, Texas 78130 Texas Registered Engineering Firm # 18712

Table of Contents

PROJEC	CT BACKGROUND	2
PROJEC	CT AREA	2
FORCE	MAIN SYSTEM ALIGNMENT	3
DEVEL	OPMENT OF WASTEWATER FLOWS	3
1.	Equivalent Dwelling Units (EDU's)	3
2.	Wastewater Flow Projections	4
A.	Average Dry Weather Flow (ADF)	4
В.	Peak Dry Weather Flow (PDWF)	4
C.	Peak Wet Weather Flow (PWWF)	5
Lift Stat	ion Design Analysis	5
1.	Northlake Lift Station Wet Well Capacity	5
2.	Selection of Force Main Size	6
3.	Selection of Pump, Motors, and Impellers	6
4.	Detention of Effluent & Total Cycle Times:	7
Appendi	ix A : Site Location	9
Appendi	ix B: Wet Well Analysis	11
Appendi	ix C: Flygt Pumps, Impeller, & Motor	21

PROJECT BACKGROUND

Utility Engineering Group, PLLC (UEG), was contracted by Colliers Engineering & Design (CED) for the proposed Northlake Lift Station & Forcemain Project. The lift station will follow the required design criteria, specifications, and will be in accordance with both San Antonio Water System (SAWS), and the Texas Commission of Environmental Quality (TCEQ).

The proposed lift station will collect sewage from the Northlake Subdivision, located within the proposed lift station service area boundary as described in the SAWS Utility Service Agreement No. 28154. The proposed developed flows from the subject area will be further discussed later in this report. The routing and design of the gravity sewer system that will bring flow to the proposed lift station will be completed by CED and will follow proposed and future right-of-way and easements, terminating at a manhole located within the lift station site. A vicinity map is included in Appendix A and shows the Northlake development in relation to the proposed lift station site.

PROJECT AREA

The proposed lift station is located within the Extraterritorial Jurisdiction of the City of San Antonio, just west of Gardner Road and north of Calaveras Lake. The proposed lift station site will be located within a dedicated parcel, platted with the development, and dedicated to SAWS. The proposed lift station site will utilize approximately 0.31 AC out of the total 0.37 AC lift station lot and will incorporate the wet well, valve pad, electrical components, and all associated appurtenances which are included in the attached Site Location Map and associated construction plans. The existing site conditions consist of relatively flat topography with soil profiles ranging from clayey sands to sandstone and fat clay with trees and significant vegetation located throughout the lift station site as well as the rest of the proposed development area.

FORCE MAIN SYSTEM ALIGNMENT

The Northlake wastewater collection system, designed by CED, will collect and deliver wastewater flows to the proposed lift station site. The associated off-site forcemain was designed by UEG, in coordination with the routing and tie-in locations provided by CED. Utility Engineering Group has coordinated with CED and SAWS on the force main design and alignment in order to size the lift station pumps and yard piping, as well as avoid any other utility conflicts inside and outside of the proposed development. The proposed wastewater flows will be pumped by the proposed lift station through a proposed 12-inch HDPE Ductile Iron Pipe System (DIPS) force main approximately 14,815 feet to the north of the site. Due to the length of the proposed line, a dual-forcemain system will be utilized for redundancy. The lines will be identical and parallel HDPE pipe systems. After reaching the highest proposed elevation of approximately 591 ft MSL, the force main terminates at the existing manhole located southwest of New Sulphur Springs Road.

DEVELOPMENT OF WASTEWATER FLOWS

1. Equivalent Dwelling Units (EDU's)

The determination of the wastewater flows for the proposed lift station are calculated based on the Equivalent Dwelling Units, (EDU's) and land use. An EDU is the standardized measure of consumption, use, generation or discharge of water or wastewater attributable to a single-family residence. UEG has confirmed with CED the number of allotted EDU's for the Northlake Subdivision that will contribute to the proposed lift station.

Based on the project Utility Service Agreement and SAWS Lift Station Design Criteria, the proposed lift station wet well is sized for a total of 2,450 EDU's, which will only include the proposed Northlake Subdivision. See Table 1 below for a breakdown of the projected EDU's.

Land Uses	EDU's/ AC	Allotted EDU's
Northlake	5.47	
Subdivision		2,450
Total:		2,450

 Table 1: Equivalent Dwelling Units for the Northlake Trails Lift Station.

2. Wastewater Flow Projections

The proposed Sunshine Trails lift station projected wastewater flows were determined based on SAWS Lift Station Design Criteria which utilizes a proposed wastewater flow design value of 200 gpd/EDU, 600 gallons per acre for Infiltration/Inflow (I/I), and a Peaking Factor of 2.5. Each of the calculations shown below were used to develop the proposed flow conditions for the design of the lift station.

A. Average Dry Weather Flow (ADF)

In accordance with the San Antonio Water System Lift Station Design Guidelines, the Average Dry Weather Flow is calculated using the formula:

ADF = Total EDU * 200 gpd/EDU

A total of 340.3 gpm (490,000 gpd) was calculated for the proposed land plan uses detailed above. Table 2 below provides the calculated ADF for each of the proposed development areas.

B. Peak Dry Weather Flow (PDWF)

The Peak Dry Weather Flow (PDWF) of 850.7 gpm (1,225,000 gpd) was determined using the SAWS Guidelines. The formula provided below was used to calculate the PDWF:

PDWF = Total EDU * 2.5 gpd/EDU

Table 2 below provides the calculated PDWF for each of the proposed development units.

C. Peak Wet Weather Flow (PWWF)

The Peak Wet Weather Flow (PWWF) of 1037.3 gpm (1,493,764 gpd) was determined using the SAWS Lift Station Design Guidelines. The formula provided below was used to calculate the PWWF:

PWWF = PDWF + I/I

The overall proposed conditions and wastewater flow projection is provided in Table 2 below.

Landplan Uses	Average Dry	Peaking	Peak Dry	Infiltration/	Peak Wet	
	Weather Flow	Factor Dry	Weather	Inflow	Weather	
	(gpd)	Weather Flow	Flow (gpd)	(gpd)	Flow (gpm)	
Northlake	340.3	2.5	1,225,000	268,764	1037.3	
Subdivision						
Totals	340.3	2.5	1,225,000	268,764	1037.3	

Table 2: Equivalent Dwelling Units for the Northlake Lift Station Service Area

Lift Station Design Analysis

The Northlake Lift Station has been designed based on the Texas Administrative Code, Chapter 217 - Design Criteria for Domestic Wastewater Systems, as well as the San Antonio Water System Lift Station Design & Construction Guidelines. The design is based on multiple factors including projected force main sizing, the calculated peak wet weather flow from the proposed development areas, and buildout of the proposed lift station service area. Additionally, the capacity of the wet well will also depend on various factors. These factors will be further summarized later in the report.

1. Northlake Lift Station Wet Well Capacity

The Northlake Lift Station wet well capacity was determined based on the flow contributing from each of the identified development units. Based on the contributing PWWF from the development, the overall influent design flow of 1037.3 gpm (1,493,764 gpd) has been utilized for the proposed lift station wet well design. The lift station has been designed utilizing a 14-

foot fiberglass wet well layout, approximately 31-feet in depth. The buoyancy will be also included with our calculations to verify our design. Appendix B of the report provides the full analysis of the wet well design for the lift station.

2. Selection of Force Main Size

The selected pipe material, length, and inside diameter are all factors in the calculation of the force main losses. Additionally, the number and type of bends and valves in the force main system are also evaluated to determine the Total Dynamic Head (TDH). According to SAWS Lift Station and Construction Guidelines, "*All pipe material shall consist of fusionwelded HDPE, and both engineering report and plans must indicate either Ductile Iron Pipe Size (DIPS) or Iron Pipe Size (IPS)*". Per SAWS criteria, UEG has selected a High-Density Polyethylene (HDPE) DIPS pipe material. Referring to SAWS design criteria, a minimum 150-psi pressure rating pipe must be considered. A 12-inch (11.127 I.D.) 160-psi DR13.5 would be suitable when considering a HDPE DIPS pipe material selection. Due to the length of the forcemain being almost 3 miles long (14,815 LF), dual 12" force mains will be provided.

(a) HDPE Ductile Iron Pipe System (DIPS)

Selecting an HDPE DIPS material with a lift station firm pumping capacity flow of 1092 gpm, a velocity of 3.60 fps is expected. Using a factor of Using a factor of C=150, the TDH would approximately be 168-ft. Utilizing a C=150 value, the expected water hammer pressure would be approximately 115.1-psi, which is below proposed DIPS 160-psi rated pipe.

3. Selection of Pump, Motors, and Impellers

Based on the analysis, the selected pumps are Flygt model NP 3202 SH

3~275 at a frequency of 60 Hz which provides a pumping capacity of **720** gpm with 1-pump running, and a total firm pumping capacity of **1092** with 2 pumps running and one on standby. Each of the pumps will alternate accordingly, prolonging the life expectancy of the pumps.

The selected Flygt pumps produce approximately 168-feet of total head based on the minimum and maximum elevations depicted within the lift station design. The overall pump efficiency for each of the pumps will vary depending on the total dynamic head conditions, however at the station design point, the selected pumps will have an overall efficiency of 58.4%. The impeller chosen for the lift station design will consist of a hard-iron impeller and the selected pump motors are Flygt model NP3202 SH~3 275 (50hp) with a rated speed of 3,555 rotations per minute (RPM). The selected Flygt pumps are shown to be efficient with the given parameters and with the selected motor and impeller. Appendix C provides additional detail of the selected pumps.

4. Detention of Effluent & Total Cycle Times:

The detention time, calculated with the wet well design, is utilized to determine the amount of storage and cycle times expected for the inflows to fill the wet well when reaching its maximum capacity. The PWWF detention time can be calculated by using the equation provided in the SAWS Lift Station Design and Construction Guidelines. The following equation is utilized to find the detention time in the wet well design:

$T_d = T_f + T_e$

In this scenario, the summation of the time to fill (T_f) plus the time to empty (T_e) equates to 89.37 minutes of total detention time for lift station. Odor control is required if the total detention time is greater than 180 minutes, in this case, no odor control is required for the lift station. An aerator system, Wet Well Wizard, shall be placed to normalize and eliminate hydrogen sulfide due to the septic conditions and dissolve fats, oils and related

odors within the wet well.

The total cycle time for the proposed lift station was also determined using the design criteria. The method is shown below for reference:

Cycle Time (min) = $T_e + 2T_d$

This formula assumes on the pump being on for one pumping cycle of T_e and for two storage cycles of T_f due to alternating pumps. The total cycle times for the project are provided in the table below:

Detention Time &	T _e Total Time to Empty (Min.)	T _f Total Time to Fill (Min.)	T _d Total Detention Timo
	(1111.)	(14111.)	(Min.)
ADF	6.17	13.64	19.81
MDWF	4.65	49.78	54.43
PWWF	84.90	4.47	89.37
PDWF	19.23	5.46	24.69

Table 3: Total Cycle Times (Ultimate Capacity with Selected Pumps)

Appendix A : Site Location

Doc# 20240224679 12/06/2024 01:32 PM Page ង <u>o</u>f 20 Lucy Adame-Clark, Bexar County Clerk

Appendix B: Wet Well Analysis

Northlake LS Wastewater Planning

Wastewater Planning Factors:

⁽¹⁾ Wastewater Flow =	200	gpd/LUE
⁽¹⁾ Infiltration/Inflow =	600	gpd/acre

Contributing Areas - SAWS Northlake LS Wastewater System

Landplan Uses	Living Unit Equivalent (LUE) per Acre	LUE's ⁽²⁾	Area (acres) ⁽²⁾	Average Dry Weather Flow (gpd)	Average Dry Weather Flow (gpm)	Minimum Flow (gpd)	Minimum Flow (gpm)	Peaking Factor Dry Weather Flow ⁽¹⁾	Peak Dry Weather Flow (gpd)	Peak Dry Weather Flow (gpm)	Infiltration /Inflow (gpd)	Peak Wet Weather Flow (gpd)	Peak Wet Weather Flow (gpm)
Total Flow Contributing to the Northlake Lift Station	5.47	2450	447.94	490,000	340.3	134,241	93.2	2.50	1,225,000	850.7	268,764.0	1,493,764	1037.3
Total for the Entire Northlake LS System		2450	447.94	490,000	340.3	134,241	93.2	2.50	1,225,000	850.7	268,764.0	1,493,764	1037.3

Notes:

⁽¹⁾ Information based on SAWS Design Standards

(2) Based on information provided by KFW Engineers and Surveying Utility Serivce Agreement

*Acreage from Lot Layout dated March 2024

*LUE's from Lot Layout dated March 2024

Northlake Wastewater Lift Station Design - Pump Requirements

	HDPE					
C	= 150					
			Minor			
Q	Velocity	Pipe	Losses	Total Losses		
(gpm)	(fps)	Friction (ft)	(ft)	(ft)	TDH (ft)	
50	0.16	0.16	0.00	0.17	116.90	
100	0.33	0.59	0.02	0.61	117.34	
150	0.49	1.25	0.04	1.29	118.02	
200	0.66	2.13	0.07	2.20	118.93	
250	0.82	3.23	0.10	3.33	120.06	
300	0.99	4.52	0.15	4.67	121.40	
350	1.15	6.01	0.20	6.21	122.94	
400	1.32	7.70	0.26	7.96	124.69	
450	1.48	9.57	0.33	9.90	126.63	
500	1.65	11.63	0.41	12.04	128.77	
550	1.81	13.87	0.49	14.37	131.10	
600	1.98	16.30	0.59	16.88	133.61	
650	2.14	18.90	0.69	19.59	136.32	
700	2.31	21.67	0.80	22.47	139.20	
750	2.47	24.62	0.92	25.54	142.27	
800	2.64	27.75	1.05	28.79	145.52	
850	2.80	31.04	1.18	32.22	148.95	
900	2.97	34.50	1.32	35.82	152.55	
950	3.13	38.13	1.48	39.61	156.34	
1000	3.30	41.93	1.63	43.56	160.29	
1037	3.42	44.84	1.76	46.60	163.33	Design Capacity
1050	3.46	45.89	1.80	47.69	164.42	
1092	3.60	49.34	1.95	51.29	168.02	Pump Capacity
1100	3.63	50.01	1.98	51.99	168.72	
1150	3.79	54.30	2.16	56.46	173.19	
1200	3.96	58.74	2.35	61.10	177.83	
1250	4.12	63.35	2.55	65.91	182.64	1
1300	4.29	68.12	2.76	70.88	187.61	1
1350	4.45	73.05	2.98	76.03	192.76	1

٦

Northlake Wastewater Lift Station Design - Wet Well Storage Requirements

min.

17

Min. Cycle Time:

Motor HP	Min. Cycle Time in Minutes (Using Average Daily Flow)			Motor HP	Min. Cycle Time in Minutes (Using Average Daily Flow)	Fill Time (min.)	Empty Time (min.)	
Less Than 50	6	(TCEQ Min.)	Less Than 50	10	7	3	(San Antontio Water System
50-100	10			50-100	17	12	5	
Over 100	15			Over 100	25	18	7	
Total F	Pump Capacity Required:	1037	gpm					
	Lead Pump Capacity:	720	gpm					
Te	otal Firm Pump Capacity:	1092	gpm					
	Pump Horsepower:	50	hp					

SAWS Lift Station Wet Well Storage Requirements

Wet Well Cycling Time (TCEQ):

1). $T_{Cy} = T_F + T_E$	
T _{cy} = 28.9	T _F = Wet Well Fill Time (mins.) (All pumps off to Lead Pump On)
2) $T_{-} = \frac{V}{V}$	T _{E=} Wet Well Empty Time (mins.)
2). $I_F = \frac{Q_i}{Q_i}$	T _{cy} = Wet Well Cycling Time (mins.)
T _f = 15.2	V= Wet Well Active Volume (gallons). Internal Cross Section and Lead Pump on and All Pumps off Level
V	Q,= Average Daily Flow (gpm)
3). $T_E = \frac{r}{Q_0 - Q_i}$	Q_{o} = Pump flow with one pump running (gpm)
T _e = 13.6	

Required Wet Well Volume:

V _R = (Min. Cycle Time x Pu	mp Capacity))					
V _R = 4,641.00	(gallons)						
V _R = 620.41	(ft ³)						
Minimum Demoire d'Mertin	Denth						
winimum Required working	Deptn:						
Basin Dia. 14	(ft)						
Volume/1ft: 153.938	(ft ³)						
Volume/1ft: 1151.534	(gallons)						
Minimum Required Working	g Depth =	4.03 (ft)					
Actual Worl	king Depth =	4.50 (ft)					
Actual Wet W	ell Volume =	5181.90 (gallons)					
High Level Alarm On:	480.94	480.94					
High Level Alarm Reset	480.44	480.44					
Lag Pump On	479.94	479.94					
Lead Pump On	479.44	479.44					
All Pumps Off	474.94	474.94					
Low Level Alarm Reset	474.44	474.44					
Low Level Alarm On	473.94	473.94					
Wet Well Design:							
Basin Area 153 93804	(ft)						
Basin Depth 31.00	(ft)						
Volume 4772.08	(ft ³)						
Volume 35697.54	(gallons)						
Design Flow 1092	gpm						
		Distance From Wet					
	Elevation	Well Floor	_				
High Level Alarm On:	480.94	8.50					
High Level Alarm Reset	480.44	8.00					
Lag Pump On	479.94	7.50					
Lead Pump On	479.44	7.00					
All Pumps On	474.94	2.50					
Low Level Alarm On	474.44	2.00					
Low Level Alarm On	473.94	1.50					
WW Flow I	ine In Flev ·	480 94					
Top of Wet We	I Slab Elev.:	503 44	Overall Wetwell Depth	31.00			
Bottom of Wet We	I Slab Elev.:	472.44		01.00			
Volume of Storage:							
V _S = Average Daily Flow (g	pd) x (1 Hr. N	/lin. / 2 Hr. Max. Storage	e) / 24 Hr.	V _S = Pe	eak Wet Weather Flow (gpd)	k (20-min l	/lin. / 40-min Max Storage)
Average Daily flow:	490,000	(gpd) (2 Hr. Ma	x Storage)		PWWF: 1,493,764	(gpd)	(40-min. Max Storage)
V _S = 40,833	(gallons)			V _S =	41,493 (gallons)		
V _S = 5,458.64	(ft ³)			V _S =	5,546.88 (ft ³)		
Average Daily flow:	490,000	(gpd) (1 Hr. Mir	n. Storage)		PWWF: 1,493,764	(gpd)	(20-min. Min. Storage)
V _S = 20,417	(gallons)			V _S =	20,747 (gallons)		
V _S = 2,729.32	(ft ³)			V _s =	2,773.44 (ft ³)	EMERG	ENCY STORAGE REQUIREMENTS ME
Lowest MH Top Elev. Or W	W Top Elev.	(Use Lowest):	503.44 (ft)				
Lead Pump Elev:	·		479.44 (ft)				
Lowest MH Elev Lead Pu	mp Elev.		24 (ft)				
Total Volume:			3694.513 (ft ³)				
Total Gallons:			27636.8 (gallons)				
Wet Well Vent Sizing:							
Total Firm Pumping Capaci	ty:	1092 gpm	145.98 cfm				
TCEQ Max. Vent Air Flow F	Rate:	600 fpm					
Min. Vent Size Based on TO	EQ Max. Flo	ow Rate:	6.68 in				
Vent Size Selected:	8	in					
Max. Vent Air Flow Rate Ba	sed on Vent	Size Selected:	418.20 fpm	VENT SIZE MEET	S TCEQ REQUIREMENTS		

Northlake Wastewater Lift Station - Wet Well Detention Times & Force Main Flush Times

Wet Well Detention	Times	Interim Storage Requirements							
Peak Wet Weather Flows:		Vr =	4641	Gal	√s =	40,833.33	Gal		
$T_d = T_f + T_e$			620.37]ft°		5,458.27	ft		
*Q _{in} = 1037.34 Peak Wet W Q _{out} = 1092 Pump Capac	eather (gpm) sity (gpm)	F	1092 17	Pump GPM (gpm) Min. Cycle Time (min)					
Time to Fill $(T_f) = 4.47$	(min.)								
Time to Empty $(T_e) = 84.90$	(min.)								
T _d = 89.37	Detention Time (min.) Less than 180 min. NO ODOR CONTROL	REQUIRED							
Total Cycle Time = 178.75	(min.)								
Peak Dry Weather Flows: $T_d = T_f + T_e$									
Q _{in} = 850.69 Peak Dry We Q _{out} = 1092 Pump Capac	eather (gpm) sity (gpm)								
Time to Fill $(T_f) = 5.46$ Time to Empty $(T_e) = 19.23$	(min.) (min.)								
T _d = 24.69	Detention Time (min.) Less than 180 min. NO ODOR CONTROL	REQUIRED							
Total Cycle Time = 49.38	(min.)								
Average Dry Weather Flows: Td = tf + te									
Q_{in} = 340.28 Average Dai Q_{out} = 1092 Q-ADF (gpm	ly Flow (gpm) ı)								
Time to Fill $(T_f) =$ 13.64 Time to Empty $(T_e) =$ 6.17	(min.) (min.)								
T _d = 19.81	Detention Time (min.) Less than 180 min. NO ODOR CONTROL	REQUIRED							
Total Cycle Time = 39.63	(min.)								
Minimum Dry Weather Flows: $T_d = T_f + T_e$									
Q _{in} = 93.22 Minimum Dry	v Weather (gpm)								
$Q_{out} = 1092$ Pump Capac	city (gpm)								
Time to Fill $(T_f) = 49.78$ Time to Empty $(T_e) = 4.65$	(min.) (min.)								
T _d = 54.43	Detention Time (min.) Less than 180 min. NO ODOR CONTROL	REQUIRED							
Total Cycle Time = 108.86	(min.)								

Average Force Main Flush Time

$$WWFT = \frac{7.481\pi D^2(\Delta h_{on-off})}{4Q_i}$$

$$D = \underbrace{\begin{array}{c} D \\ 4.50 \\ Qi \end{array}}_{Qi} ft$$

$$di = \underbrace{\begin{array}{c} 340.28 \\ 340.28 \end{array}}_{gpm} ft$$

Avg. Wet Well Filling Time (WWFT) = 15.23 min.

$$PRT = \frac{7.481\pi D^2(\Delta h_{on-off})}{4(Q_o - Q_i)}$$

Qo = 1092 gpm

Avg. Pump Running Time (PRT) = 6.89 min.

WWDT = WWFT + PRT

Avg. Wet Well Detention Time(WWDT) = 22.12 min.

 $FC = \frac{L}{60V_{FM}(PRT))}$ $V_{\rm fm} = \underbrace{\begin{array}{c} 3.60 \\ L = & 14815 \end{array}}_{\rm ft} {\rm ft/s}$

Avg. Flushing Cycle (FC) = 9.9359 cycles

 $FT = (FC_W)(WWDT) + (FC_D)(PRT)$

$FC_W =$	9.0
$FC_D =$	0.9359

Average Force Main Flush Time (FT) = 205.56 min.

Northlake Wastewater Lift Station Design - Pipe Sizing

Flow Rate = 720.00 1 pump gpm Qin = 1.60 cfs Pipe I.D. (in.) Pipe Size (in.) Velocity (fps) 6 5.817 8.69 HDPE DIPS DR13.5 8 5.05 7.63 10 9.375 3.35 2.38 12 11.127 Pump Rate = 1092 2 pumps gpm Qin = 2.43 cfs Velocity (fps) Pipe Size (in.) Pipe I.D. (in.) 13.18 6 5.817 8 7.63 7.66 10 5.08 9.375 12 11.127 3.60

From Pump Suction to Valve Vault

JOB Northlake Lift Station

Winter Engineering 1202 Hurst Hollow Austin, TX 78734 (512) 431-8724

_ DATE_

____ DATE _____

Wet Well Design - 14:0" I.D. x 31:0" deep Fiberglass I Hydrostatic Pressure - assume water table @ grade w/ S.F. = 1.1 For buoyancy , cap mat : Hydrostatic pressure = (65pst) 31'+1'+1.5') = 2180 psf x 1.1 = 2400 pst I Gravity Loads - note: while cap slab is isolated, it still contributes to overburden. : DL. mat = (0,15 Kcf X 1.5 X 9.0') = 57 K D.L. cap = [(D.15) 1.0' 18' (24') 65K D.L. back F.M = [(0.15) (1.5)+ (.09) 30)](9'=7.5')m=2311 353K II Puplitt = (2.4 Kot XX (9.0')2 = 611K (includes S.F.) : Check contribution from soil / backfill wedge: wedge width @ top = (29.5' (sin 10°) = 5.1" =7 Try 26 '\$: PpL wedge = (.09 +cf (29.5') (132-92) (1/2 (7) = 367 K 720 K Búoyanay Resistance OK IV Mat Design - Empty Wet Well wuplift = (2.13 kst)(1.2) = 2.62 kst - (1.5)(.15 kst) = 2.4 kct 1 secobor L.F. check shear w/ 18" thick mat; fc'= 4000 psi; Vc=2(.75) 14000 (12)(14) = 15.94 Klf Vy = (7x (6.5')2(2.62 KoF)/7 (13) = 8.5 KLF OK Check outside perimeter: = 500 F + 65 Pbackful = 611K - (57K = 554K (1.2)/7 (9.52-7.5) = 8. . + NO = 6.22 krf × 1.5 Vy = 9.34 LECF B. OK 4500 • 02/15/25

PRODUCT 204-1 (Single Sheets) 205-1 (Padded)

ą

Appendix C: Flygt Pumps, Impeller, & Motor

NP 3202 SH 3~ 275

Patented self cleaning semi-open channel impeller, ideal for pumping in waste water applications. Modular based design with high adaptation grade.

Curves according to: Water, pure Water, pure [100%], 39.2 °F, 62.42 lb/ft³, 1.6891E-5 ft²/s

Technical specification

Configuration		Ifty Heat 260 240 230 240 230 210 200 210 100 100 100 100 100 100 100 100 100 100 00 0 Nomin 0 Nomin 0	al (mean) data s consult your lo	400 e	58.4%	800 [L Cur mance from thi zes.	275 200mm JS g.p.m.] ve: ISO 9906 s data should rantees.
Motor number N3202.185 30-19-2AA-W	Installation type P - Semi permanent, Wet						
Impeller diameter 200 mm	Discharge diameter 4 inch						
Pump information		Material					
Impeller diameter 200 mm		Impeller Hard-Iron ™					
Discharge diameter 4 inch							
Inlet diameter 150 mm							
Maximum operating speed 3555 rpm							
Number of blades 2							
Max. fluid temperature 40 °C							
Project Northlake LS Block 0		Created by Created on	Garry Mont 2/6/2025	gomery Last update		2/6/2025	

User group(s) Xylem: USA - EXT

NP 3202 SH 3~ 275

Technical specification

Motor - General

Motor number	Phases	Rated speed	Rated power 50 hp			
N3202.185 30-19-2AA-W 50hp	3~	3555 rpm				
ATEX approved	Number of poles	Rated current	Stator variant			
No	2	56 A	38			
Frequency	Rated voltage	Insulation class	Type of Duty			
60 Hz	460 V	Н	S1			
Version code						
185						
Motor - Technical						
Power factor - 1/1 Load	Motor efficiency - 1/1 Load	Total moment of inertia	Starts per hour max.			
0.92	90.2 %	3.54 lb ft ²	30			
Power factor - 3/4 Load	Motor efficiency - 3/4 Load	Starting current, direct starting				
0.90	89.8 %	480 A				
Power factor - 1/2 Load	Motor efficiency - 1/2 Load	Starting current, star-delta				

ictor - 1/2 Loa 0.85

cy - 1/2 Load 87.9 %

nt, star-delta 160 A

Project Block

Northlake LS 0

Created by Garry Montgomery Created on 2/6/2025 Last update

2/6/2025

FLYGT

a **xylem** brand

Data version 2/6/2025 14:29 A2P2 Usergroup(s) Xylem:USA - EXT

NP 3202 SH 3~ 275

Duty Analysis

NP 3202 SH 3~ 275

Dimensional drawing

User group(s) Xylem:USA - EXT