

POSS LANDING SUBDIVISION PHASE 2

REVISED STORMWATER MANAGEMENT PLAN

11/08/2024

PREPARED FOR:

CENTURY COMMUNITIES

2330 N Loop 1604 W Access Road, Suite 112

San Antonio, TX 78248

CUDE ENGINEERS SAN ANTONIO | AUSTIN | SAN MARCOS

4122 POND HILL ROAD, STE 101 SAN ANTONIO, TEXAS 78231 PHONE: (210)681-2951 CUDEENGINEERS.COM TBPE NO. 455 TBPELS NO. 10048500 September 23, 2024

City of Leon Valley Planning and Zoning Department 6400 El Verde Road Leon Valley, TX, 78238

Re: Poss Landing Phase 2 Subdivision Stormwater Management Plan

To Whom This May Concern,

Please find enclosed with this submittal copies of the Poss Landing Subdivision Stormwater Report for phase 2. This site is fully within the city limits of Leon Valley, Bexar County, Texas. This tract of land is <u>not</u> subject to the City of San Antonio mandatory detention requirements, <u>not</u> located within the Edwards Aquifer Contributing or Recharge Zones, and <u>not</u> located within the limits of a floodplain.

If you have any questions regarding the drainage design, hydrology, hydraulics or regarding this submittal please contact Mr. Kyle Hudek, P.E. (<u>khudek@cudeengineers.com</u>) for more detailed assistance.

Thank you for your assistance in this matter.

Sincerely,

K Hedek

Kyle Hude, P.E. Senior Project Manager

4122 POND HILL ROAD, STE 101 SAN ANTONIO, TEXAS 78231

STORMWATER MANAGEMENT PLAN Poss Landing Subdivision (Phase 2)

PROJECT SCOPE:

Poss Landing Subdivision Phase 2 is a proposed single-family residential development that encompasses approximately 6-acres of lightly developed land set to be dealt with before construction. Located southwest of the intersection of Huebner Road and Evers Road, in Leon Valley, Texas, this development will consist of 49 residential lots, street infrastructure, drainage improvements and utility infrastructure. Stormwater from this development flows south to Huebner Road and west towards Leon Valley Elementary School. Ultimately, the stormwater runoffs flow to Huebner Creek. Please refer to the attachments for the location map.

JURISDICTIONAL AUTHORITY:

- This property is located fully within the city limits of Leon Valley, Texas.
- This property is <u>not</u> located within the limits of the Edwards Aquifer Contributing or Recharge Zone.
- This property is <u>not</u> located within a FEMA Floodplain (FIRM Panel 48029C0240G, dated September 29, 2010).

Please refer to the attachments for the detailed jurisdictional exhibits.

METHODOLOGY:

To accurately analyze the existing and proposed drainage patterns, the stormwater runoff for the areas of this shed had to be computed. With the shed being less than 200 acres with no significant flood storage, the Rational Method was used for computing the hydrology for this development. The Time of Concentration for each drainage area was determined using the Seelye Chart for overland flow, the TR-55 method for shallow concentrated flow, and the channel flow was calculated at 6 feet per second over the length of the flow. The overall Time of Concentration was found by adding the overland flow, shallow concentrated flow, and the channel flow together. Rainfall intensities were obtained from Section 10.02, Division 9, Exhibit X of the Leon Valley Code of Ordinances for the 5-year, 25-year, and 100-year storm events. Runoff coefficients were obtained from Section 10.02.34(a)(1) of the Leon Valley Code of Ordinances. For existing conditions, the land characteristic of the undeveloped property is best described as large lot residential area and average slopes over three (3) percent up to five (5) percent. For the proposed development, the land is best described as closely built residential with average slopes over three (3) percent up to five (5) percent. The proposed conditions.

EXISTING SITE CONDITION NARRATIVE

In existing conditions, the natural topography conveys a small portion of stormwater runoff west towards Leon Valley Elementary School and a larger portion of the stormwater runoff south towards Huebner Road. The average slopes of the north portion range from three (3) percent to five (5) percent. The stormwater runoff from the southern portion of the property is conveyed along Huebner Road to Cherryleaf Drive; ultimately flowing to Huebner Creek. The slopes of the southern portion range from three (3) percent to five (5) percent to five (5) percent. To analyze the existing shed conditions, composite runoff coefficients were calculated using 0.47 for natural/grassed areas, 0.62 for large lot residential areas, and 0.80 for dense residential areas draining onto the property. Please refer to the attachments for the existing conditions drainage area maps.

PROPOSED SITE CONDITION NARRATIVE

The proposed development will consist of street infrastructure, drainage improvements, utility construction and single-family residential homes. To analyze the proposed shed conditions, composite runoff coefficients were calculated using 0.47 for natural/grassed areas and 0.80 for dense residential areas. The proposed topography will continue to convey stormwater to the southwestern and south sides of the development. For area A1, the watershed will be flowing towards Huebner Road in the direction of the proposed detention pond and area A2 will flow towards Huebner Road bypassing the detention pond. All flow discharging towards the school property shown in the existing conditions Area 2 has been redirected towards Huebner Road due to the proposed grading of the site. This redirection of flow has been accounted for in the detention analysis. Please refer to the attachments for the proposed conditions drainage area maps.

	Existing A1 vs. Proposed A1+A2													
Storm	Ex. Q (cfs)	Prop. Q (cfs)	Difference											
5 YR	14.93	25.54	+10.61											
25 YR	20.53	35.12	+14.59											
100 YR	25.34	43.36	+18.02											

DETENTION FACILITIES

For Phase 2 of the Poss Landing development, detention will be provided to mitigate the increased runoff resulting from the increase of impervious cover that will cause rises in water surface elevations, increases in velocities, and an increase in peak flows. To mitigate these adverse impacts, one detention pond is being proposed within this development; this detention pond will mitigate the adverse impacts to the surrounding properties back to existing conditions flows. The table below shows a summary of existing and proposed flows as well as the inflow and outflow of the proposed detention pond. This comparison shows a net reduction of flow towards Huebner Road.

	Flow Co	mparison	Proposed Detention Pond 1						
	Existing (cfs)	Proposed (cfs)	Inflow (cfs)	Outflow (cfs)					
5 Year	14.93	11.60	17.91	5.53					
25 Year	20.53	16.48	24.63	8.22					
100 Year	25.34	21.26	30.41	12.17					

ADVERSE IMPACT STATEMENT (2,000' DOWNSTREAM ANALYSIS)

Stormwater from the site will be conveyed to outlet points on the southern side of the subdivision. Stormwater runoff from the northern portion of the property will be discharged at equal to or less than existing conditions. The stormwater runoff from the southern portion of the property will be conveyed to the proposed detention pond in the eastern corner of the property and discharged at equal to or less than existing conditions. The discharge from this pond will ultimately be conveyed to Huebner Creek.

With the proposed construction of onsite detention, the increased runoff resulting from the proposed development will <u>not</u> produce a significant adverse impact to other properties, habitable structures, or any drainage systems to a point 2,000 feet downstream.

ATTACHMENTS:

- Poss Landing Subdivision Plat (Phase 2)
- Location Map
- Flood Insurance Rate Map
- Exhibit E1 Existing Site Hydrology
- Exhibit E2 Proposed Site Hydrology
- Exhibit E3 Impervious Cover
- Street Plan & Profile and Capacity Calculations
- Proposed Pond & Drain Exhibit
- Existing Shed Hydrograph Exhibit
- Proposed/Ultimate Shed Hydrograph Exhibit

SITE	1 2 3 4 5 6 7 8 9 884 10 11 BLK 4 CB 4446 9 884 10 11 BLK 4 CB 4446 9 16'17 93.73'
	NORTHSIDE I.S.D. 4.073 AC.
LOCATION MAP	C.B. 446 P-46B ABS.
Ac. = ACRES BLK = BLOCK B.S.L. = BUILDING SETBACK LINE C1 = CURVE NUMBER C.B. = COUNTY BLOCK CPS = CITY PUBLIC SERVICE DOC. = DOCUMENT D.P.R. = DEED RECORDS OF BEXAR COUNTY, TEXAS DRN. = DRAINAGE E.G.T.CA = ELECTRIC, GAS, TELEPHONE, AND CABLE TELEVISION ESMT. = EASEMENT	Image: Second
LL - LINE NUMBER NAD = NORTH AMERICAN DATUM NO. = NUMBER O.P.R. = OFFICIAL PUBLIC RECORDS OF BEXAR COUNTY, TEXAS PG. = PAGE PGS. = PAGES ROW = RIGHT-OF-WAY VAR. = VARIABLE VOL. = VOLUME WID. = WIDTH " = EQUAL TO PREVIOUS BEARING/DIMENSION \blacksquare \blacksquare CITY LIMIT LINE \blacksquare \blacksquare STREET CENTERLINE \blacksquare LEEV. \blacksquare SITING GROUND MAJOR CONTOUR \blacksquare \blacksquare SUITING GROUND MAJOR CONTOUR	COMMON AREA MAINTENANCE NOTE: THE MAINTENANCE OF ALL PRIVATE STREETS (LOT 999, BLOCK 3), OPEN SPACE, (INCLUDING LOT 902, BLOCK 3, LOT 901, BLOCK 4, AND LOT 903, BLOCK 6), DRAINAGE EASEMENTS AND EASEMENTS OF ANY OTHER NATURE WITHIN THIS SUBDIVISION SHALL BE THE RESPONSIBILITY OF THE PROPERTY OWNERS, OR THE PROPERTY OWNERS' ASSOCIATION, OR ITS SUCCESSORS OR ASSIGNS AND NOT THE RESPONSIBILITY OF THE CITY OF LEON VALLEY
 ELEV. = EXISTING GROUND MINOR CONTOUR = EXISTING PROPERTY LINE = 10' E.G.T.CA EASEMENT POSS LANDING UNIT 1, PLAT NUMBER 2022-20 = 10' E.G.T.CA. EASEMENT = 10' E.G.T.CA. EASEMENT = EXISTING WELL TO BE PROPERLY CAPPED 	FLOODPLAIN VERIFICATION NOTE: NO PORTION OF THE FEMA 1% ANNUAL CHANCE (100-YEAR) FLOODPLAIN EXISTS WITHIN THIS PLAT AS VERIFIED BY FEMA MAP PANEL: 48029C0240G, EFFECTIVE 2010-09-29. FLOODPLAIN INFORMATION IS SUBJECT TO CHANGE AS A RESULT OF FUTURE FEMA MAP REVISIONS AND/OR AMENDMENTS. DRAINAGE EASEMENT ENCROACHMENTS NOTE:
	NO STRUCTURE, FENCES, WALLS OR OTHER OBSTRUCTIONS THAT IMPEDE DRAINAGE SHALL BE PLACED C3 58.00' 48' WITHIN THE LIMITS OF THE DRAINAGE EASEMENTS SHOWN ON THIS PLAT. NO LANDSCAPING OR OTHER C4 20.00' 90' TYPE OF MODIFICATIONS, WHICH ALTER THE CROSS-SECTIONS OF THE DRAINAGE EASEMENTS, AS C4 20.00' 90' APPROVED, SHALL BE ALLOWED WITHOUT THE APPROVAL OF THE CITY OF LEON VALLEY. THE CITY OF C5 20.00' 90' PROPERTY TO REMOVE ANY IMPEDING OBSTRUCTIONS PLACED WITHIN THE GRANTOR'S AD JACENT C6 58.00' 90' DETENTION POND MAINTENANCE NOTE: DETENTION POND MAINTENANCE NOTE: C7 20.00' 90' MAINTENANCE OF ON-SITE STORM WATER DETENTION SHALL BE THE SOLE RESPONSIBILITY OF THE C8 20.00' 90'
THIS SUBDIVISION PLAT OF <u>POSS LANDING UNIT 2</u> HAS BEEN SUBMITTED TO AND CONSIDERED BY THE CITY COUNCIL OF THE CITY OF LEON VALLEY, TEXAS, AND IS HEREBY APPROVED BY SUCH CITY COUNCIL.	PROPERTY OWNERS AND/OR THE PROPERTY OWNERS'ASSOCIATION AND ITS SUCCESSORS OR ASSIGNS C13 58.00' 12' AND IS NOT THE RESPONSIBILITY OF THE CITY OF LEON VALLEY. C14 58.00' 12' PRIVATE STREET DESIGNATION NOTE: C14 58.00' 12' LOT 999, BLOCK 3, CB 4446, IS A PRIVATE STREET AND IS DESIGNATED AS AN UNDERGROUND AND AT-GRADE INFRASTRUCTURE AND SERVICE FACILITIES EASEMENT FOR GAS, ELECTRIC, STREET LIGHT, TELEPHONE, CABLE TELEVISION, DRAINAGE, PEDESTRIAN, PUBLIC WATER, WASTEWATER, AND RECYCLED WATER MAINS. C13 58.00' 12'
DATED THIS DAY OF, A.D	CPS/ LEON VALLEY UTILITY NOTES: 1. THE CITY OF LEON VALLEY - IS HEREBY DEDICATED EASEMENTS AND RIGHTS-OF-WAY FOR UTILITY, TRANSMISSION AND DISTRIBUTION INFRASTRUCTURE AND SERVICE FACILITIES IN THE AREAS DESIGNATED ON THIS PLAT AS "ELECTRIC EASEMENT," "ANCHOR EASEMENT," "SERVICE EASEMENT. "OVERHANG EASEMENT." "UTILITY FASEMENT." "GAS EASEMENT." "TRANSFORMER
BY: MAYOR/CITY COUNCIL	EASEMENT," "WATER EASEMENT," "SANITARY SEWER EASEMENT" AND/OR "RECYCLED WATER EASEMENT" POR THE PURPOSE OF INSTALLING, CONSTRUCTING, RECONSTRUCTING, MAINTAINING, REMOVING, INSPECTING, PATROLLING, AND ERECTING UTLITY INFRASTRUCTURE AND SERVICE FACILITIES FOR THE REASONS DESCRIBED ABOVE. CPS ENERGY SHALL ALSO HAVE THE RIGHT TO RELOCATE SAID INFRASTRUCTURE AND SERVICE FACILITIES WITHIN EASEMENT AND RIGHT-OF-WAY AREAS, TOGETHER WITH THE RIGHT OF INGRESS AND EGRESS OVER GRANTOR'S ADJACENT LANDS FOR THE PURPOSE OF ACCESSING SUCH INFRASTRUCTURE AND SERVICE FACILITIES AND THE RIGHT TO REMOVE FROM SAID LANDS ALL TREES OR PARTS THEREOF, OR OTHER OBSTRUCTIONS WHICH ENDANGER OR MAY INTERFERE WITH THE EFFICIENCY OF WATER, SEWER, GAS, AND/OR FICERRASTRUCTURE AND SERVICE FACILITIES NO MILI DINGS STRUCTIONS
THE CITY ENGINEER OF THE CITY OF LEON VALLEY HEREBY CERTIFIES THAT THIS SUBDIVISION PLAT CONFORMS TO ALL REQUIREMENTS OF THE SUBDIVISION REGULATIONS OF THE CITY AS TO WHICH HIS APPROVAL IS REQUIRED	 SLABS, OR WALLS WILL BE PLACED WITHIN EASEMENT AREAS WITHOUT AN ENCROACHMENT AGREEMENT WITH THE RESPECTIVE UTILITY ANY CPS ENERGY MONETARY LOSS RESULTING FROM MODIFICATIONS REQUIRED OF CPS ENERGY INFRASTRUCTURE AND SERVICE FACILITIES, LOCATED WITHIN SAID EASEMENTS, DUE TO GRADE CHANGES OR GROUND LEVATION ALTERATIONS SHALL BE CHARGED TO THE PERSON OR PERSONS DEEMED RESPONSIBLE FOR SAID GRADE CHANGES OR GROUND ELEVATION ALTERATIONS. THIS PLAT DOES NOT AMEND, ALTER, RELEASE OR OTHERWISE AFFECT ANY EXISTING ELECTRIC, GAS, WATER, SEWER, DRAINAGE, TELEPHONE, CABLE TV EASEMENTS OR ANY OTHER EASEMENTS FOR UTILITIES UNLESS THE CHANGES TO SUCH EASEMENTS ARE DESCRIBED HEREON. CONCRETE DRIVEWAY ADPEDDACHES ARE ALL OWED WITHIN THE FIVE (5) AND TEN (10) EDOT WIDE
CITY ENGINEER	 ELECTRIC AND GAS EASEMENTS WHEN LOTS ARE SERVED ONLY BY UNDERGROUND ELECTRIC AND GAS FACILITIES. ROOF OVERHANGS ARE ALLOWED WITHIN THE FIVE (5) AND TEN (10) FOOT WIDE ELECTRIC AND GAS EASEMENTS WHEN ONLY UNDERGROUND ELECTRIC AND GAS FACILITIES ARE PROPOSED OR EXISTING WITHIN THOSE FIVE (5) AND TEN (10) FOOT WIDE EASEMENTS.
STATE OF TEXAS COUNTY OF BEXAR I HEREBY CERTIFY THAT PROPER ENGINEERING CONSIDERATION HAS BEEN GIVEN TO THIS SUBDIVISION PLAT TO THE MATTERS OF STREETS, LOTS, AND DRAINGE LAYOUT. TO THE BEST OF MY KNOWLEDGE THIS PLAT CONFORMS TO ALL REQUIREMENTS OF THE UNIFIED DEVELOPMENT CODE, EXCEPT FOR THOSE VARIANCES GRANTED BY THE LEON VALLEY PLANNING COMMISSION.	RESIDENTIAL FIRE FLOW NOTE: THE PUBLIC WATER MAIN SYSTEM HAS BEEN DESIGNED FOR A MINIMUM FIRE FLOW DEMAND OF 1,000 GPM AT 25 PSI RESIDUAL PRESSURE TO MEET THE CITY OF LEON VALLEY'S FIRE FLOW REQUIREMENTS FOR THE RESIDENTIAL DEVELOPMENT. THE FIRE FLOW REQUIREMENTS FOR INDIVIDUAL STRUCTURES WILL BE REVIEWED PRIOR TO BUILDING PERMIT APPROVAL IN ACCORDANCE WITH THE PROCEDURES SET FORTH BY THE CITY OF LEON VALLEY FIRE MARSHAL. OPEN SPACE NOTE:
M.W. CUDE ENGINEERS L.L.C. CHRISTOPHER J. CHAFFEE, P.E. LICENSED PROFESSIONAL ENGINEER	LOT 902, BLOCK 3, LOT 901, BLOCK 4, AND LOT 903, BLOCK 6, CB 4446, IS DESIGNATED AS OPEN SPACE AND AS A COMMON AREA AND A DRAINAGE, SEWER, WATER, ELECTRIC, GAS, TELEPHONE AND CABLE TV EASEMENT. SURVEYOR'S NOTES: 1. THE BEARINGS AND COORDINATES SHOWN HEREON ARE BASED ON THE TEXAS STATE PLANE
STATE OF TEXAS COUNTY OF BEXAR	 COORDINATE SYSTEM, SOUTH CENTRAL ZONE, NAD 83 (2011). 1/2" IRON RODS WITH CAP STAMPED "CUDE" SET AT ALL PROPERTY CORNERS (IF PRACTICAL) UPON COMPLETION OF CONSTRUCTION. COORDINATES SHOWN HEREON ARE GRID. DISTANCES SHOWN HEREON ARE SURFACE = GRID * 1.00017
I HEREBY CERTIFY THAT THIS SUBDIVISION PLAT IS TRUE AND CORRECT AND WAS PREPARED FROM AN ACTUAL SURVEY OF THE PROPERTY MADE UNDER MY SUPERVISION ON THE GROUND.	GENERAL PLATTING NOTES: 1. 16' FRONT BUILDING SETBACK 2. 10' REAR BUILDING SETBACK 3. 3' OR 10' SIDE SETBACK WHEN ADJACENT TO ROADWAY
M.W. CUDE ENGINEERS, L.L.C. YURI V. BALMACEDA WHEELOCK, R.P.L.S	

SITE MAPS

CUDE ENGINEERS SAN ANTONIO | AUSTIN | SAN MARCOS

4122 POND HILL ROAD, STE 101 SAN ANTONIO, TEXAS 78231 PHONE: (210) 681-2951 CUDEENGINEERS.COM

TBPE NO. 455 TBPELS NO. 10048500

Poss Landing

Intersection of Heubner and Evers Rd

boogle Earth-

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Sitiwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for food insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic conderations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

The **projection** used in the preparation of this map was Texas State Plane South Central Zone (FIPS zone 4204). The **horizontal datum** was NAD 83, GRS 80 spheroid. Differences in datum, spheroid, projection or State Plane zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at <u>http://www.nss.nona.gov</u> or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, NGS12 Nation Geodetic Survey SSMC-3, #9202 Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information about the bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit their website at <u>http://www.ngs.noaa.gov/</u>.

Base map information shown on this FIRM was provided for Bexar County by Petroleum Place Energy Solutions, L.P. The vector data was derived from Aerial Photography, dated 2006 and captured at a resolution of 1:800.

This map reflects more detailed up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or deannexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact the FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change. a Flood Insurance Study report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-358-9620 and their website at <u>http://msc.fema.gov</u>.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at <u>http://www.fema.gov/business/nfip</u>.

SHED DRAINAGE COMPUTATIONS

CUDE ENGINEERS SAN ANTONIO | AUSTIN | SAN MARCOS

4122 POND HILL ROAD, STE 101 SAN ANTONIO, TEXAS 78231 PHONE: (210) 681-2951 CUDEENGINEERS.COM

TBPE NO. 455 TBPELS NO. 10048500

OUNDARY																		CUDEENGINEERS.COM
AGE BOUNDARY FLOW TC LINE OW CONCENTRATED TC LINE INTRATED TC LINE AULATION POINT		4 5 6	883 — - 883 — - 7 8 9 7 8 9 884 7 8 9 BLK 4 CB 4446	10	11 12		1 2 POSS LANE DOC. NO. 2023022551) 3 0ING .0, 0.P.R.B.C.T.)	4 \ \5 \ BLK 3 CB 4446			LOT 901 BLOCK 3 OPEN SPAC VAR. WID DRN. ESM PERMEABL (0.719 AC.	A A A C E D L E C A A A A A A A A A A A A A A A A A A					CUDE FNGINEERS 4122 Pond Hill Road, Suite 101
					882													San Antonio, Texas 78231 P:(210) 681.2951 F: (210) 523.7112
			NORTHSIDE I.S.D. 4.07 AC. C.B. 446 P-40 ABS. 664	2 = 2.58	3 Ac.					$\mathbf{E}\mathbf{A} 1 = 4$.75 Ac.		867866			SCALE: 1"=50'	50	NDING SUBDIVISION PHASE 2 STING CONDITIONS
						A2		 880 / /	879-	816	815 81A	869 869 810 810						POSS LA
										,								DATE 10/31/2024 Project no. 03653.005 Drawn by Mas Checked by
		Area Number	Residential Ac.	Residential Ac.	* Cracidantial lar	PO We rge lotResidentia	eighted "C" va al Ac. Resid	ng Phase alues table - E lential Ac. * (2 SUDDIVISIO	DN ns leveloped Ac.	Undeveloped Ac	. * Cundousland To	otal Ac.	Weighted C va	alue			REVISIONS
		1 2	0.15 0.06	0.12 0.05	- residential	4.60 1.35		2.85 0.84		0.00 1.17	0.00)	4.75 2.58	0.63 0.56				1. 2.
Project Na Calculation	me: Poss n Summai	C _{residential} = Landing Subdivision ry for Time of Concer	0.80 Phase 2 htrations & Ultima	C _{residenti}	ıl =	0.62		Cundeveloped	=	0.47								 3. 4. 5. 6. 7. 8.
HYDROLOGY		Z			S	heet Flow To	: Compuat	ions	c		Shallow C	onc. Ic Con	npuations		Uverall C			
Drainage Shed Computation Point)	Shed Area (Ac.)	A OF ACCUMULATIO (Ac.)	C	Length < 100'	Paved (Y or N)	Upstream Elev.	Downstream Elev	Slope	ne of Concentratio	Length < 650'	Paved (Y or N)	Downstream Elev	Slope	ne of Concentratio	ne of Concentratio (min)			CUDE ENGINEERS TBPE No. 455 TBPLS No. 10048500
2		ARE							Lin					Tin	ij			PLAT NO. PZ-2024-16
A1 A2	4.75 2.58	= A1 = A2	0.63 0.56	100.00 100.00	N N	883.89 884.10	882.84 883.42	1.05% 0.68%	14.90 16.20	506.47 450.64	N N	863.98 880.26	3.72% 0.70%	2.70 5.48	17.00 21.00			
																		E1

⁸ 9 ^{K 4} 84 REA 2	2 = 2.58	11 12 882 BAC.			3 DING 10, O.P.R.B.C.T.)			7.5 Ac.					A122 Pond Hill Road, Suite 101 San Antonio, Texas 78231 P(210) 681.2951 F: (210) 523.713 NOISINIGAN SURGINA SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB
			P	oss Landir	ng Phase	2 Subdivisio	n						DATE 10/31/2024 Project no. 03653.005 Drawn by Mas Checked by KMH
	Decidential Ac	* C	rae lotResident	/eighted "C" v	alues table - E				*0 1	Total A.c.	Weighted C va		REVISIONS
HU. F	0.12	Uresidential Ia	4.60 1.35	iai AC. Resi	uential Ac. * C 2.85 0 84	residential UNCE	0.00 1 17	Undeveloped Ac	. Undeveloped	4.75	0.63		1. 2.
Ultimat	C _{residentia}	ı =	0.62		C _{undeveloped} =		0.47						3. 4. 5. 6. 7. 8.
		S	heet Flow T	c Compua	tions			Shallow C	Conc. Tc Cor	mpuations		Overall	
C 0.63	,000 > 4160 - 100. 100.00	≥ Paved (Y or N)	Upstream Elev. 883.89	Downstream Elev 882.84	adojs 1.05%	Time of Concentration 14.90	,020, Tength < 650 , 506.47	≥ Paved (Y or N)	Downstream Elev 863.98	adojs 3.72%	Time of Concentration 2.70	Time of Concentration (min) 12.00	CUDE ENGINEERS TBPE No. 455 TBPLS No. 10048500 PLAT NO. PZ-2024-16
0.56	100.00	Ν	884.10	883.42	0.68%	16.20	450.64	Ν	880.26	0.70%	5.48	21.00	
													E1

LEGEND

= UNIT BOUNDA = DRAINAGE BOU = SHEET FLOW T = SHALLOW CON = CONCENTRATE = ACCUMULATIO

LOCATION MAP

DEVELOPER

CENTURY COMMUNITIES ATTN: VICTOR BERNAL 2330 N LOOP 1604 ACCESS ROAD, STE 112 SAN ANTONIO, TX. 78248 TEL: (210) 469-3442

NOTES:

1. THIS PRELIMINARY MASTER DRAINAGE PLAN IS FOR ILLUSTRATIVE PURPOSES ONLY AND NOT MEANT FOR DESIGN OR CONSTRUCTION PURPOSES.

2. RUN-OFF COEFFICIENTS DERIVED FROM THE CITY OF LEON CODE OF ORDINANCES SECTION 10.02.304 STORM DRAINAGE.

TYPICAL LOT SITE PLAN

RY JNDARY 'c LINE ICENTRATED TC LINE ED TC LINE IN POINT				BUFFLEF	HEAD BEND																	CUDEENGINEER EST. 1980 CUDE CUD CUD CUD CUD CUD CUD CUD CUD CUD CUD	S.COM
				7 885 884 NORTHS 4.07 C.B. 446 P-4	8 884 CB 4446	9 10				A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A B B CR 4446 A A A A A A A A A A A A A A A A A A				LOT 901 BLOCK 3 PEN SPACE VAR. WID. RN. ESMT ERMEABLE 0.719 AC.)				SCALE: 1"=50'	50	C HECKED B KMH I. 2. 3. 4. 5	LANDORED CONDITIONS
			-	Area	a Number 1		Resider 4.	itial Ac. 21	Resid	ential Ac. * C	C _{residential}	Jndevelope 0.78	ed Ac. Und	eveloped Ac 0.3	. * C _{undeveloped}	Total Ac. Weighted 0	; value					6. 7.	
			-	Cro	2 _{sidential} =		1. 0.	94 80		1.55 C _{undeveloped}	=	0.38		0.1	3	2.32 0.7	5					8.	
Project Nar	me: Poss L	anding Sub	division P	hase 2		F law			I								Precipital	tion					ıdoval
calculation	n Summar HYDRO	y ror Time o ILOGY	r Concen	trations &	She	et Flow T	c Compual	ions		SI	hallow Co	onc. Tc Co	ompuation	ıs		Concentrat	ed Tc Compu	utations		Overall			'31 4:59pm msar
Drainage Shed (Computation Point)	Shed Area (Ac.)	AREA OF ACCUMULATION (Ac.)	С	Length < 100'	Paved (Y or N)	Upstream Elev.	Downstream Elev	Slope	Time of Concentration	Length < 650'	Paved (Y or N)	Downstream Elev	Slope	Time of Concentration	Length	Paved (Y or N)	Downstream Elev	Slope	Time of Concentration	Time of Concentration (min)		CUDE ENGINE TBPE No. 455 TBPLS No. 10048 PLAT NO. PZ-2024-16	A Report/SWMP/Exhibits/2024-06-11 - Proposed Conditions.dwg 2024/10/3
A1 A2	4.99 2.32	= A1 = A2	0.75 0.75	100.00 100.00	N N	885.57 883.63	883.42 882.82	2.15% 0.81%	12.70 15.90	335.43 342.82	N N	880.68 880.04	0.82% 0.81%	3.89 3.99	593.56 529.29	Υ Υ	865.49 863.17	2.56% 3.19%	3.06 2.42	19.00 22.00			53\004\3-Design
	I				I						I	REPRODUCTION		SIGNED AND SEALED P									P:\036

FLEHEAD BEND	883 10 11 884 883 883 883 883 883		I DOC. NO	2 POSS LANDING .20230225510, O.P.R.	3 .B.C.T.)	A A A A REY OROZCO LANE			9 B B B B B B B B B B B B B B B B B B B	OT 901 LOCK 3 EN SPACE AR. WID. N. ESM'T RMEABLE 719 AC.)				SCALE: 1"=50'	50	CUDEENGINEERS.C.
		A A BBB A A	A A A A A A A A A A A A A A A A A A A		A B 880 A	A A A B B B C C C C C C C C C C C C C C	A B B B B B B B C C C C C C C C C C C C	A A A A A A A A A A A A A A A A A A A	AC. B B C C C C C C C C C C C C C C C C C	AC.						DATE 10/31/2024 PROJECT NO. 03653.005 DRAWN BY MAS CHECKED BY KMH REVISIONS 1.
		P W	oss Lar /eighted "(nding P	hase able - P	2 Subdiv	ision ditions					٢				2. 3. 4. 5.
rea Number 1	Reside 4	ntial Ac. .21	Resid	lential Ac. * 3.37	C _{residenti}	Undeveloped	dAc.Und	leveloped Ac. 0.37	. * C _{undeveloped} T 7	Total Ac.Weig4.992.20	hted C value					6. 7. 8.
C _{residential} =	0	.94 .80		1.55 C _{undevelope}	_d =	0.38		0.18	5	2.32	0.75					
& Ultimate Flow											Precipital	tion				
Sheet Flo	ow Tc Compua	tions	-	S	Shallow	Conc. Tc Co	mpuatior	ns		Concent	rated Tc Compu	Itations		Overall		
Paved (Y or N) Upstream Elev.	Downstream Elev	Slope	Time of Concentration	Length < 650'	Paved (Y or N)	Downstream Elev	Slope	Time of Concentration	Length	Paved (Y or N)	Downstream Elev	Slope	Time of Concentration	Time of Concentration (min)		CUDE ENGINEERS TBPE No. 455 TBPLS No. 10048500 PLAT NO. PZ-2024-16
N 885.57	883.42	2.15% 0.81%	12.70 15.90	335.43 342.82	N	880.68 880.04	0.82% 0.81%	3.89	593.56 529.29	Y Y	865.49 863.17	2.56% 3.19%	3.06 2.42	19.00 22.00		
003.03	002,02	0.01/0	10.00	J 72, UZ	IN.	REPRODUCTION	OF THE ORIGINAL S	SIGNED AND SEALED P	LAN AND/OR ELECTRONIC N	I ' MEDIA MAY HAVE BEEN INA	DVERTENTLY ALTERED. CONTR	ACTOR IS RESPONSIBLE	EFOR VERIFYING THE SCA	LE OF THE DOCUMENT A	I	RS TO VERIFY DISCREPANCIES PRIOR TO CONSTRU

LOCATION MAP

DEVELOPER CENTURY COMMUNITIES ATTN: VICTOR BERNAL 2330 N LOOP 1604 ACCESS ROAD, STE 112 SAN ANTONIO, TX. 78248 TEL: (210) 469-3442

LEGEND

-

IMPERVIOUS COVER

IMPERVIOUS COVER CALCULATIONS

EXISTING IMP COVER												
EXISTING	26447.54	SF	0.6072	AC								
TOTAL LOT	262078.23	SF	6.0165	AC								
IMP COVER %	10.09											

PROPOSED IMP COVER												
IMP. COVER	140656.09	SF	3.2290	AC								
TOTAL LOT	262078.23	SF	6.0165	AC								
IMP COVER %	53.67											

EXISTING V.S. PROPOSED												
IMP. COVER	114208.55 (INCREASE)	SF	2.6219 (INCREASE)	AC								
TOTAL LOT	0	SF	0	AC								
IMP COVER %	43.58 (INCREASE)											

15 14 13		10	11	12	13 REY ORC		15 E	16	17	18	19
II II II II II II II II II II II II II	DGE ET)	1	2	3	(38' PRIV	ATE STREET)	6	7	8	9	
	REDHEAD RII (38' PRIVATE STRE	10	11	12	13	14	15	16	17	18	MONACO
23 22 21		1	2	3	MONA (38' PRIV	ACO WAY ATE STREET)	6	7	8	9	10

STREET CONSTRUCTION PLANS

CUDE ENGINEERS SAN ANTONIO | AUSTIN | SAN MARCOS

4122 POND HILL ROAD, STE 101 SAN ANTONIO, TEXAS 78231 PHONE: (210)681-2951 CUDEENGINEERS.COM TBPE NO. 455 TBPELS NO. 10048500

	50 25	SCALE: 1"=50'	50	CUDEENGINEE EST. 196 CCUCE CCUCE CVG/NEE 4122 Pond Hill Road San Antonio, Texa P:(210) 681.2951 F: (2	RS.COM
54				POSS LANDING SUBDIVISION PHASE 2	MONACO WAY STREET PLAN AND PROFILE
	·····	HORIZON VER	TAL SCALE: 1" = 50' ΓΙCAL SCALE: 1" = 5'	DATE	
				11/6/202 Project 03653.00 Drawn e Mas	24 NO. 95 BY
			880	CHECKED KMH Revision 1.	BY
			875	2. 3. 4. 5.	·····
			870	6. 7. 8.	
			865	KYLE M. HUI	Ψ _σ DEK
			860	CUDE ENGIN TBPE No. 4 TBPLS No. 100	11/08/2024 EERS 55 48500
			855	PLAT NC PZ-2024-1	2024/11/06 12:18pm msand
				C7. 0	005(2-DWG(4-Plans)C7.01. STPP.d

					SCALE: 1"=50'		
				50	25 0 50		
							SWGINEERS
	(4122 Pond Hill Road, Suite 101 San Antonio, Texas 78231 P:(210) 681.2951 F: (210) 523.7112
CONC. MOUNTABLE CURB							
Image: Solution of the second secon							Z
							IVISIO
5+00							SUBD E 2 TREET TIEET
2 CONC. MOUNTABLE CURB 6.25' 2550' 6.25' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							PHAS PHAS
							SS LAN
							PO:
E							
+97.51 379:23 379.23 				 	HORIZONTAL SCAI VERTICAL SCA	LE: 1" = 50' ALE: 1" = 5'	DATE 11/7/2024
PVI STA 13 RT ELEV:= 3 PVT STA 14 RET STA 14 RET STA 144 00 REDHEAD				 			PROJECT NO. 03653.005 DRAWN BY
: : : : : : : : : :				 			MAS Checked by KMH
LEV = 879.50 I .00' VC RT = -0.40 RT = 25.17 RT TA = 14+42.51						885	REVISIONS 1.
ELEV = 879.87 EXISTING GROUND RT +1 42%						990	2. 3. 4.
EXISTING GROUND LT +1.00% LT +2.00%						880	5. 6. 7.
OP OF CURB						875	8.
				 		870	куle м. ниdeк з 138753 <u>ж</u>
				 		865	CENSED SS/ONI ENG 11/08/2024
				 		860	TBPE No. 455 TBPLS No. 10048500 TBPLS No. 10048500 PLAT NO. East of the second se
878.91 879.87 879.987 880.54							PZ-2024-16
878.80 879.50 879.54 879.78							C7.02
I	: : 16+00	·····	:	:	: :		P:\03653\005\2-DW

NORTHSIDE I.S.D. 10.646 AC. C.B. 4446G BLK 2 LOT 1

REPRODUCTION OF THE ORIGINAL SIGNED AND SEALED PLAN AND/OR ELECTRONIC MEDIA MAY H

€ PI STA 15+26.54 REDHEAD RIDGE END CONSTRUCTION CONTRACTOR TO INSTALL 28 L.F. OF HEADER CURB AND 6" GUARD POSTS

PVI STA 11+00.00 BEGIN CONSTRUCTION CONTRACTOR TO REMOVE 28 L.F. OF HEADER CURB 28 L.F. OF HEADER CURB 28 L.F. OF HEADER CURB 28 L.F. OF HEADER CURB 28 L.F. OF HEADER CON PVI STA 11+15.00 PVI STA 11+30.00 PVI STA 11+40.00 PVI STA 11+50.00 PVI STA 11+50.00 PVI STA 11+71.00	PVI STA 11+96.00 12+10.00 REDHEAD RIDGE +28.40 REÝ OROZCO LANE PVI STA 12+23.99 PVI STA 12+49.00 PVI STA. 12+49.00 PVI STA. 12+49.00	PVI STA 13+32.75 LT RET STA. 13+81.00 14+20.00 ŘEDHEAD RIDGE A. 15+39.95 MONACO WAY	LT RET: STA. 14+49.00 LT RET STA. 14+59.00 PVI STA 14+95.67 PVI STA 15+10.67 FVI STA 15+10.67 contraction 15+26.54 END CONSTRUCTION CONTRACTOR TO INSTALL 28.L.F. OF HEADER CURB & 6" GUARD POSTS	
	^ε PI STA. = ε STA. 15	€ Pj STA ÷ € STA		
-0.85% RT +0:65% RT +2.15% -5.35% LT -4.94% LT PVM'T	T EXISTING GROUNT	2.25% RT -0.75% RT +0.60% RT	UND RT +3.50% - +2.00%	
EXISTING GROUND RT	LT PVM'T	-2.25% LT -0.75% LT +0.75% LT PVM'T +2.25% LT PVM'T	-+2.25% LT	
883.91 884.01 883.64 883.26 883.26	881.44 881.30 880.48 880.19 880.10 880.10	878.99 878.86 878.23 878.23	878.33 878.51 878.81 879.34 880.07 880.07	
11+00	10,100 10	878.45 878.45 878.32 878.08 877.61 (PVMT.) (PVMT.)	877.47 (PVMT.1) (PVMT.49 (PVMT.49 (PVMT.4) 878.51 878.61 879.34 880.07 880.07	

SCALE: 1"=50 50 25 0 50	CUDEENGINEERS.C	COM
	POSS LANDING SUBDIVISION PHASE 2	אבטחבאט אוטטב או אבר דראא אואט דאטרווב
HORIZONTAL VERTICAI	SCALE: 1" = 50' _ SCALE: 1" = 5' 	
	PROJECT NO. 03653.005 Drawn by Mas	
	CHECKED BY KMH REVISIONS 1. 2	
	2. 3. 4. 5.	· · · · · · · · · · · · · · · · · · ·
	6. 7. 8.85 8.	
		;/2024
	C7.03	3653/005V-DWG(4-Plans(C7.03_STPP.o

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Sep 24 2024

MONACO WAY 25YR

	Highlighted	
= 799.42	Depth (ft)	= 0.30
= 2.50	Q (cfs)	= 15.88
= 0.018	Area (sqft)	= 4.48
	Velocity (ft/s)	= 3.55
	Wetted Perim (ft)	= 28.61
Known Q	Crit Depth, Yc (ft)	= 0.36
= 15.88	Top Width (ft)	= 28.00
	EGL (ft)	= 0.50
	= 799.42 = 2.50 = 0.018 Known Q = 15.88	Highlighted= 799.42Depth (ft)= 2.50Q (cfs)= 0.018Area (sqft)Velocity (ft/s)Wetted Perim (ft)Known QCrit Depth, Yc (ft)= 15.88Top Width (ft)EGL (ft)EGL (ft)

(Sta, El, n)-(Sta, El, n)... (0.00, 800.24)-(12.00, 800.00, 0.035)-(12.00, 799.42, 0.015)-(26.00, 799.70, 0.018)-(40.00, 799.42, 0.018)-(40.00, 800.00, 0.015)-(52.00, 800.24, 0.035)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Nov 5 2024

MONACO WAY 25YR UNDETAINED

User-defined		Highlighted	
Invert Elev (ft)	= 799.42	Depth (ft)	= 0.19
Slope (%)	= 10.00	Q (cfs)	= 8.810
N-Value	= 0.018	Area (sqft)	= 1.80
		Velocity (ft/s)	= 4.88
Calculations		Wetted Perim (ft)	= 19.38
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.29
Known Q (cfs)	= 8.81	Top Width (ft)	= 19.00
		EGL (ft)	= 0.56

(Sta, El, n)-(Sta, El, n)... (0.00, 800.24)-(12.00, 800.00, 0.035)-(12.00, 799.42, 0.015)-(26.00, 799.70, 0.018)-(40.00, 799.42, 0.018)-(40.00, 800.00, 0.015)-(52.00, 800.24, 0.035)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

REY OROZCO LANE 25YR

User-defined		Highlighted	
Invert Elev (ft)	= 798.86	Depth (ft)	= 0.52
Slope (%)	= 0.60	Q (cfs)	= 16.98
N-Value	= 0.018	Area (sqft)	= 6.76
		Velocity (ft/s)	= 2.51
Calculations		Wetted Perim (ft)	= 26.53
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.50
Known Q (cfs)	= 16.98	Top Width (ft)	= 26.00
		EGL (ft)	= 0.62

(Sta, El, n)-(Sta, El, n)... (0.00, 800.24)-(12.00, 800.00, 0.035)-(12.00, 799.42, 0.015)-(26.00, 799.14, 0.018)-(40.00, 798.86, 0.018)-(40.00, 799.44, 0.015)-(52.00, 799.68, 0.035)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

REY OROZCO LANE 25YR LOW CURB STA 16+62

	Highlighted	
= 868.40	Depth (ft)	= 0.28
= 2.00	Q (cfs)	= 15.92
= 0.018	Area (sqft)	= 4.89
	Velocity (ft/s)	= 3.26
	Wetted Perim (ft)	= 29.09
Known Q	Crit Depth, Yc (ft)	= 0.33
= 15.92	Top Width (ft)	= 29.03
	EGL (ft)	= 0.45
	= 868.40 = 2.00 = 0.018 Known Q = 15.92	= 868.40 Depth (ft) = 2.00 Q (cfs) = 0.018 Area (sqft) Velocity (ft/s) Wetted Perim (ft) Known Q Crit Depth, Yc (ft) = 15.92 Top Width (ft) EGL (ft) EGL (ft)

(Sta, El, n)-(Sta, El, n)... (0.00, 869.19)-(12.00, 868.95, 0.035)-(13.00, 868.62, 0.015)-(41.00, 868.40, 0.018)-(42.00, 868.73, 0.015)-(54.00, 868.97, 0.035)

DRAINAGE CONSTRUCTION PLANS

CUDE ENGINEERS SAN ANTONIO | AUSTIN | SAN MARCOS

4122 POND HILL ROAD, STE 101 SAN ANTONIO, TEXAS 78231 PHONE: (210) 681-2951 CUDEENGINEERS.COM

TBPE NO. 455 TBPELS NO. 10048500

LOCATION MAP N.T.S.

DEVELOPER

CENTURY COMMUNITIES ATTN: VICTOR BERNAL 2330 N LOOP 1604 W ACCESS ROAD, STE 112 SAN ANTONIO, TX. 78248 TEL: (210) 469-3442

NOTES:

1. TIME OF CONCENTRATIONS USED FOR FLOW RATE CALCULATIONS WERE SET TO 20 MINUTES FOR ALL DRAINAGE AREAS. A DETAILED ANALYSIS OF TIME OF CONCENTRATIONS WILL BE PROVIDED DURING THE DRAINAGE DESIGN PHASE OF THE SUBDIVISION.

2. RUN-OFF COEFFICIENTS DERIVED FROM THE CITY OF SAN ANTONIO UDC APPENDIX H.

TYPICAL LOT SITE PLAN N.T.S.

= UNIT BOUNDARY = DRAINAGE BOUNDARY = SHEET FLOW Tc LINE = SHALLOW CONCENTRATED Tc LINE = CONCENTRATED Tc LINE

= ACCUMULATION POINT

Project Na	roject Name: Poss Landing Subdivision Phase 2 Precipitation Summary for Time of Concentrations & Ultimate Flow																				
Calculation Summary for Time of Concentrations & Ultimate Flow HYDROLOGY Sheet Flow Tc Computions Shallow Conc. Tc Computions									Cor	ncentra	ted Tc	Comput	ations	Overall							
Drainage Shed (Computation Point)	Shed Area (Ac.)	AREA OF ACCUMULATION (Ac.)	C	Length < 100'	Paved (Y or N)	Upstream Elev.	Downstream Elev	Slope	Time of Concentration	Length < 650'	Paved (Y or N)	Downstream Elev	Slope	Time of Concentration	Length	Paved (Y or N)	Downstream Elev	Slope	Time of Concentration	Time of Concentration (min)	
A1	3.16	= A1	0.76	100.00	N	885.67	883.47	2.20%	12.60	225.49	Ν	881.58	0.84%	2.58	575.90	Y	863.60	3.12%	2.67	18.00	
A2	1.74	= A2	0.73	100.00	N	884.10	883.36	0.74%	16.00	<u>326.87</u>	Ν	880.68	0.82%	3.78	444.91	Y	867.23	3.02%	2.11	22.00	
A3	1.99	= A3	0.74	100.00	Ν	883.63	882.82	0.81%	15.90	342.82	Ν	880.04	0.81%	3.99	529.29	Y	863.17	3.19%	2.42	22.00	
CP1	4.90	= A1+A2	0.75	100.00	Ν	884.10	883.36	0.74%	16.00	326.87	Ν	880.68	0.82%	3.78	580.63	Y	863.60	2.94%	2.79	23.00	

	Poss Landing Phase 2 Subdivision												
	Weighted "C" values table - Ultimate Conditions												
ber Residential Ac. Residential Ac. Cresidential Undeveloped Ac. Undeveloped Ac. Cundeveloped Ac. Total Ac. Weighted (
	2.76	2.21	0.40	0.19	3.16	0.76							
	1.36	1.09	0.38	0.18	1.74	0.73							
	0.00	0.00	0.01	0.00	0.01	0.47							
	4.12	3.30	0.78	0.37	4.90	0.75							
=	0.80	C _{undeveloped} =	0.47										

LOCATION MAP N.T.S.

DEVELOPER

CENTURY COMMUNITIES ATTN: VICTOR BERNAL 2330 N LOOP 1604 W ACCESS ROAD, STE 112 SAN ANTONIO, TX. 78248 TEL: (210) 469-3442

LEGEND:

0.67%

= COMPACT SUBGRADE — — 1290 — = EXISTING CONTOUR = PROPOSED CONTOUR 1290

= 8" X 12" ROCK RUBBLE

= CONCRETE

= PROPOSED FLOW ARROW

STORM	POND OUTLET	WATER
EVENT	FLOW (CFS)	SURFACE ELEV.
5 YR	5.53	866.47
25 YR	8.22	866.92
100 YR	12.17	867.22

AREA (SO, FT.)	VOL. (CU. FT.)	CUM. VOL. (CU. FT.)
· · · · · · · · · · · · · · · · · · ·		••••••
8,915		
10,355	9,625	9,625
11,853	11,095	20,720
13,408	12,622	33,342
	AREA (SQ. FT.) 8,915 10,355 11,853 13,408	AREA (SQ. FT.) VOL. (CU. FT.) 8,915 10,355 9,625 11,853 11,095 13,408 12,622

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Nov 8 2024

DRIAN 2A - 25-YR

Rectangular	
	111

Bottom Width (ft)	= 4.00
Total Depth (ft)	= 3.50
Invert Elev (ft)	= 100.00
Slope (%)	= 4.17
N-Value	= 0.015
Calculations	

Compute by:	Known Q
Known Q (cfs)	= 15.92

Highlighted		
Depth (ft)	=	0.41
Q (cfs)	=	15.92
Area (sqft)	=	1.64
Velocity (ft/s)	=	9.71
Wetted Perim (ft)	=	4.82
Crit Depth, Yc (ft)	=	0.79
Top Width (ft)	=	4.00
EGL (ft)	=	1.88

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Nov 8 2024

DRIAN 2B - 25-YR

Rectangular Bottom Width (ft) Total Depth (ft)	= 2.00 = 3.50
Invert Elev (ft) Slope (%) N-Value	= 100.00 = 4.17 = 0.015
Calculations Compute by: Known Q (cfs)	Known Q = 7.60

Highlighted		
Depth (ft)	=	0.43
Q (cfs)	=	7.600
Area (sqft)	=	0.86
Velocity (ft/s)	=	8.84
Wetted Perim (ft)	=	2.86
Crit Depth, Yc (ft)	=	0.77
Top Width (ft)	=	2.00
EGL (ft)	=	1.64

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Nov 8 2024

DRIAN 2C - 100-YR

Bottom Width (ft)	= 5.00 = 1.50
Invert Elev (ft)	= 100.00
Slope (%)	= 0.80
N-Value	= 0.015
Calculations	
Compute by:	Known Q
Known Q (cfs)	= 12.17

Highlighted		
Depth (ft)	=	0.50
Q (cfs)	=	12.17
Area (sqft)	=	2.50
Velocity (ft/s)	=	4.87
Wetted Perim (ft)	=	6.00
Crit Depth, Yc (ft)	=	0.57
Top Width (ft)	=	5.00
EGL (ft)	=	0.87

DETENTION ANALYSIS

CUDE ENGINEERS SAN ANTONIO | AUSTIN | SAN MARCOS

4122 POND HILL ROAD, STE 101 SAN ANTONIO, TEXAS 78231 PHONE: (210)681-2951 CUDEENGINEERS.COM TBPE NO. 455 TBPELS NO. 10048500 Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Watershed Model Schematic..... 1

5 - Year

Summary Report	. 2
Hydrograph Reports	. 3
Hydrograph No. 1, Rational, AREA A1 - Existing	. 3
Hydrograph No. 2, Rational, AREA A2 - Existing	. 4
Hydrograph No. 3, Rational, AREA A1 - Proposed	. 5
Hydrograph No. 4, Rational, AREA A2 - Proposed	. 6
Hydrograph No. 5, Reservoir, Pond 2A	. 7
Pond Report - Pond 1	. 8
Hydrograph No. 6, Combine, <no description=""></no>	. 9

25 - Year

Summary Report	10
Hydrograph Reports	11
Hydrograph No. 1, Rational, AREA A1 - Existing	11
Hydrograph No. 2, Rational, AREA A2 - Existing	12
Hydrograph No. 3, Rational, AREA A1 - Proposed	13
Hydrograph No. 4, Rational, AREA A2 - Proposed	14
Hydrograph No. 5, Reservoir, Pond 2A	15
Hydrograph No. 6, Combine, <no description=""></no>	16

100 - Year

Summary Report	17
Hydrograph Reports	18
Hydrograph No. 1, Rational, AREA A1 - Existing	18
Hydrograph No. 2, Rational, AREA A2 - Existing	19
Hydrograph No. 3, Rational, AREA A1 - Proposed	20
Hydrograph No. 4, Rational, AREA A2 - Proposed	21
Hydrograph No. 5, Reservoir, Pond 2A	22
Hydrograph No. 6, Combine, <no description=""></no>	23

Friday, 11 / 8 / 2024

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	14.93	1	17	15,226				AREA A1 - Existing
2	Rational	6.486	1	21	8,172				AREA A2 - Existing
3	Rational	17.91	1	19	20,421				AREA A1 - Proposed
4	Rational	7.625	1	22	10,065				AREA A2 - Proposed
5	Reservoir	5.528	1	32	20,411	3	866.47	14,889	Pond 2A
6	Combine	11.60	1	22	30,475	4, 5			<no description=""></no>
202	4-09-19 - Pha	ise 2 (-p	ond) Ana	alysis.gpw	Return P	eriod: 5 Ye	ar	Friday, 11 /	8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

AREA A1 - Existing

Hydrograph type	= Rational	Peak discharge	= 14.93 cfs
Storm frequency	= 5 yrs	Time to peak	= 17 min
Time interval	= 1 min	Hyd. volume	= 15,226 cuft
Drainage area	= 4.750 ac	Runoff coeff.	= 0.63
Intensity	= 4.988 in/hr	Tc by User	= 17.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

AREA A2 - Existing

Hydrograph type	= Rational	Peak discharge	= 6.486 cfs
Storm frequency	= 5 yrs	Time to peak	= 21 min
Time interval	= 1 min	Hyd. volume	= 8,172 cuft
Drainage area	= 2.580 ac	Runoff coeff.	= 0.56
Intensity	= 4.489 in/hr	Tc by User	= 21.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

Friday, 11 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

AREA A1 - Proposed

Hydrograph type	= Rational	Peak discharge	= 17.91 cfs
Storm frequency	= 5 yrs	Time to peak	= 19 min
Time interval	= 1 min	Hyd. volume	= 20,421 cuft
Drainage area	= 4.990 ac	Runoff coeff.	= 0.76
Intensity	= 4.723 in/hr	Tc by User	= 19.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

AREA A2 - Proposed

Hydrograph type	= Rational	Peak discharge	= 7.625 cfs
Storm frequency	= 5 yrs	Time to peak	= 22 min
Time interval	= 1 min	Hyd. volume	= 10,065 cuft
Drainage area	= 2.320 ac	Runoff coeff.	= 0.75
Intensity	= 4.382 in/hr	Tc by User	= 22.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

6

Friday, 11 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

Pond 2A

Hydrograph type	= Reservoir	Peak discharge	= 5.528 cfs
Storm frequency	= 5 yrs	Time to peak	= 32 min
Time interval	= 1 min	Hyd. volume	= 20,411 cuft
Inflow hyd. No.	= 3 - AREA A1 - Proposed	Max. Elevation	= 866.47 ft
Reservoir name	= Pond 1	Max. Storage	= 14,889 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Pond No. 1 - Pond 1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 865.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	865.00	8,915	0	0	
1.00	866.00	10,355	9,625	9,625	
2.00	867.00	11,853	11,095	20,720	
3.00	868.00	13,408	12,622	33,342	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	Inactive	Inactive	Inactive	0.00	Crest Len (ft)	= 1.00	6.00	Inactive	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 865.00	867.00	867.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.09	3.09	3.09	3.33
Invert El. (ft)	= 865.00	0.00	0.00	0.00	Weir Type	= Rect	Rect	Rect	
Length (ft)	= 25.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

<no description>

Hydrograph type Storm frequency	= Combine = 5 yrs	Peak discharge Time to peak	= 11.60 cfs = 22 min
Time interval	= 1 min	Hyd. volume	= 30,475 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 2.320 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	20.53	1	17	20,941				AREA A1 - Existing
2	Rational	8.920	1	21	11,239				AREA A2 - Existing
3	Rational	24.63	1	19	28,081				AREA A1 - Proposed
4	Rational	10.49	1	22	13,844				AREA A2 - Proposed
5	Reservoir	8.222	1	32	28,071	3	866.92	19,848	Pond 2A
6	Combine	16.48	1	22	41,914	4, 5			<no description=""></no>
202								Friday 11 (8 / 2024
202	4-09-19 - Pha	ase 2 (-p	ond) Ana	alysis.gpw	Return P	eriod: 25 Y	'ear	Friday, 11 /	8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

AREA A1 - Existing

Hydrograph type	= Rational	Peak discharge	= 20.53 cfs
Storm frequency	= 25 yrs	Time to peak	= 17 min
Time interval	= 1 min	Hyd. volume	= 20,941 cuft
Drainage area	= 4.750 ac	Runoff coeff.	= 0.63
Intensity	= 6.861 in/hr	Tc by User	= 17.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

Friday, 11 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

AREA A2 - Existing

Hydrograph type	= Rational	Peak discharge	= 8.920 cfs
Storm frequency	= 25 yrs	Time to peak	= 21 min
Time interval	= 1 min	Hyd. volume	= 11,239 cuft
Drainage area	= 2.580 ac	Runoff coeff.	= 0.56
Intensity	= 6.174 in/hr	Tc by User	= 21.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

AREA A1 - Proposed

Hydrograph type	= Rational	Peak discharge	= 24.63 cfs
Storm frequency	= 25 yrs	Time to peak	= 19 min
Time interval	= 1 min	Hyd. volume	= 28,081 cuft
Drainage area	= 4.990 ac	Runoff coeff.	= 0.76
Intensity	= 6.495 in/hr	Tc by User	= 19.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

Friday, 11 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

AREA A2 - Proposed

Hydrograph type	= Rational	Peak discharge	= 10.49 cfs
Storm frequency	= 25 yrs	Time to peak	= 22 min
Time interval	= 1 min	Hyd. volume	= 13,844 cuft
Drainage area	= 2.320 ac	Runoff coeff.	= 0.75
Intensity	= 6.027 in/hr	Tc by User	= 22.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

14

Friday, 11 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

Pond 2A

Hydrograph type	= Reservoir	Peak discharge	= 8.222 cfs
Storm frequency	= 25 yrs	Time to peak	= 32 min
Time interval	= 1 min	Hyd. volume	= 28,071 cuft
Inflow hyd. No.	= 3 - AREA A1 - Proposed	Max. Elevation	= 866.92 ft
Reservoir name	= Pond 1	Max. Storage	= 19,848 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

<no description>

Hydrograph type=Storm frequency=Time interval=Inflow hyds.=	= Combine	Peak discharge	= 16.48 cfs
	= 25 yrs	Time to peak	= 22 min
	= 1 min	Hyd. volume	= 41,914 cuft
	= 4, 5	Contrib. drain. area	= 2.320 ac
innow nyas.	4, 0		2.020 00

Friday, 11 / 8 / 2024

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	25.34	1	17	25,851				AREA A1 - Existing
2	Rational	11.01	1	21	13,876				AREA A2 - Existing
3	Rational	30.41	1	19	34,662				AREA A1 - Proposed
4	Rational	12.95	1	22	17,093				AREA A2 - Proposed
5	Reservoir	12.17	1	30	34,652	3	867.22	23,513	Pond 2A
6	Combine	21.26	1	27	51,745	4, 5			<no description=""></no>
202						pried: 100		Friday 11	8 / 2024
202	4-09-19 - Pha	ise 2 (-po	ond) Ana	alysis.gpw	Return P	eriod: 100	Year	Friday, 11 /	8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

AREA A1 - Existing

Hydrograph type	= Rational	Peak discharge	= 25.34 cfs
Storm frequency	= 100 yrs	Time to peak	= 17 min
Time interval	= 1 min	Hyd. volume	= 25,851 cuft
Drainage area	= 4.750 ac	Runoff coeff.	= 0.63
Intensity	= 8.469 in/hr	Tc by User	= 17.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

Friday, 11 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

AREA A2 - Existing

Hydrograph type	= Rational	Peak discharge	= 11.01 cfs
Storm frequency	= 100 yrs	Time to peak	= 21 min
Time interval	= 1 min	Hyd. volume	= 13,876 cuft
Drainage area	= 2.580 ac	Runoff coeff.	= 0.56
Intensity	= 7.622 in/hr	Tc by User	= 21.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

AREA A1 - Proposed

Hydrograph type	= Rational	Peak discharge	= 30.41 cfs
Storm frequency	= 100 yrs	Time to peak	= 19 min
Time interval	= 1 min	Hyd. volume	= 34,662 cuft
Drainage area	= 4.990 ac	Runoff coeff.	= 0.76
Intensity	= 8.017 in/hr	Tc by User	= 19.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

AREA A2 - Proposed

Hydrograph type	= Rational	Peak discharge	= 12.95 cfs
Storm frequency	= 100 yrs	Time to peak	= 22 min
Time interval	= 1 min	Hyd. volume	= 17,093 cuft
Drainage area	= 2.320 ac	Runoff coeff.	= 0.75
Intensity	= 7.442 in/hr	Tc by User	= 22.00 min
IDF Curve	= PA-3.IDF	Asc/Rec limb fact	= 1/1

Friday, 11 / 8 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

Pond 2A

Hydrograph type	= Reservoir	Peak discharge	= 12.17 cfs
Storm frequency	= 100 yrs	Time to peak	= 30 min
Time interval	= 1 min	Hyd. volume	= 34,652 cuft
Inflow hyd. No.	= 3 - AREA A1 - Proposed	Max. Elevation	= 867.22 ft
Reservoir name	= Pond 1	Max. Storage	= 23,513 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

<no description>

Hydrograph type	= Combine	Peak discharge	= 21.26 cfs
Storm frequency	= 100 yrs	Time to peak	= 27 min
Time interval	= 1 min	Hyd. volume	= 51,745 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 2.320 ac

